academic publishers

INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE (ISSN: 2692-5206)

Volume 04, Issue 05, 2024

Published Date: - 13-07-2024

LINEAR ISOMETRY ON REFLEXIVE STRONGLY FACIALLY SYMMETRIC SPACES

¹Seypullaev J.X. ²Dilmuratov D. D.

^{1,2}Karakalpak State University named after Berdakh ¹jumabek81@mail.ru, ²dilmuratovdamir@gmail.com

Absrtact: In this paper, the isometry properties of SFS-spaces are studied. It is proved that a linear operator is a surjective isometry if and only if it maps the set of indecomposable geometric tripotents onto itself and preserves the orthogonality relations on the set of indecomposable geometric tripotents.

Keywords: strongly facially symmetric space, norm exposed face, geometric tripotent, geometric Peirce projections, surjective isometry.

In 1989, the paper [1] of Friedman and Russo was published, in which facially symmetric spaces were introduced; the main purpose for introducing these spaces was a geometric characterization of the predual spaces of JB*-triples admitting an algebraic structure. Many properties required in these characterizations are natural assumptions for state spaces of physical systems. These spaces are considered as a geometric model for states in quantum mechanics. It was proved that the predual space of a complex von Neumann algebra and more general of a JB*-triples is a neutral strongly facially symmetric space (see [2]). Neal and Russo [3] found geometric conditions under which a facially symmetric space is isometric to the predual space of a complex JBW* triple. In [4], a complete description of strongly facially symmetric spaces that are isometrically isomorphic to the predual space of an atomic commutative von Neumann algebra was obtained. In [5], it was proved that the predual space of a JBW-algebra is a strongly facially symmetric space if and only if the algebra is the direct sum of an Abelian algebra and an algebra of type I₂.

In this paper, the isometry properties of SFS-spaces are studied. It is proved that a linear operator is a surjective isometry if and only if it maps the set of indecomposable geometric tripotents onto itself and preserves the orthogonality relations on the set of indecomposable geometric tripotents.

Let Z be a real or complex normed space. We say that elements x,y Z are orthogonal and write f g if ||f+g|| = ||f-g|| = ||f|| + ||g||. A face F of the unit ball $Z_1 = \{f \ Z : ||f|| \ 1\}$ is said to be norm exposed if $F = F_u = \{f \ Z_1 : u(f) = 1\}$ for some $u \ Z^*$ with ||u|| = 1. An element $u \ Z^*$ is called a projective unit if ||u|| = 1 and u(g) = 0 for all $g \ F_u$ (see [1]).

A norm exposed face F_u in Z is called a symmetric face if there exists a linear isometry S_u from Z to Z such that $S_u^2 = I$ whose fixed point set coincides with the topological direct sum of the closure $\overline{sp} \, F_u$ of the linear hull of the face F_u and its orthogonal complement F_u , i.e., with $(\overline{sp} \, F_u)$ F_u .

A space Z is said to be weakly facially symmetric (WFS) if each norm exposed face in Z_1 is symmetric.

For each symmetric face F_u , contractive projections $P_k(u)$, k = 0,1,2, on Z are defined as follows. First, $P_1(u) = (I - S_u)/2$ is the projection onto the eigenspace corresponding to the eigenvalue -1 of the symmetry S_u . Next, $P_2(u)$ and $P_0(u)$ are defined as projections of Z onto $\overline{sp} F_u$ and F_u , respectively. The projections $P_k(u)$ are called the geometric Peirce projections.

A WFS space Z is said to be strongly facially symmetric (SFS) if, for each norm exposed face F_u of Z and each y Z^* satisfying the conditions ||y|| = 1 and F_u F_y , we have $S_u^* y = y$, where S_u is the symmetry corresponding to F_u .

A projective unit u from Z^* is called a geometric tripotent if F_u is a symmetric face and $S_u^*u = u$ for the symmetry S_u corresponding to F_u . In [6, 7], a necessary and sufficient condition was found when an element of the dual space of a reflexive SFS space is geometric tripotent.

Geometric tripotents u and v are said to be orthogonal if u $P_0(v)^*Z^*$ (which implies v $P_0(u)^*Z^*$) or, equivalently, $u \pm v$ GU.

Lemma 1. Let Z be a SFS-space and $\Phi: Z \to Z$ be a linear isometry. If $u, v \in GU$ and $u \in V$, then $\Phi^*u = \Phi^*v$.

The set of geometric tripotents is ordered as follows: given u,v GU, we set u v if F_u F_v . A geometric tripotent u is called indecomposable if for v GU from v u, it follows v=u. By I we denote the set of all indecomposable geometric tripotents.

Lemma 2. Let Z be a SFS-space and $\Phi: Z \to Z$ be a surjective linear isometry. Then Φ^*u I for all u I.

Theorem 3. Let Z be an reflexive strongly facially symmetric space and $\Phi: Z \to Z$ be a linear operator. Then the following statements are equivalent:

- 1) Φ^* is a surjective isometry;
- 2) Φ^* maps I onto itself and preserves orthogonality relations on I.

References:

- [1] Friedman Y., Russo B. A geometric spectral theorem // Quart. J. Math. Oxford Ser. Vol. 37. N. 147. 1986. P. 263-277.
- [2] Friedman Y., Russo B. Some affine geometric aspects of operator algebras // Pacific. J. Math. Vol. 137. No. 1. 1989. P. 123-144.
- [3] Neal M., Russo B. State space of JB* -triples // Math. Ann. Vol. 328. No. 4. 2004. P. 585-624.
- [4] Ibragimov M.M., Kudaybergenov K.K., Tleumuratov S.Zh., Seypullaev J.Kh.

Geometric Description of the Preduals of Atomic Commutative von Neumann Algebras // Mathematical Notes. Vol. 93. No. 5. 2013. P. 715-721.

- [5] Kudaybergenov K.K., Seypullaev J.Kh. Characterization of JBW-Algebras with Strongly Facially Symmetric Predual Space // Mathematical Notes. Vol. 107. No. 4. 2020. P. 600-608.
- [6] Ядгоров Н.Ж., Сейпуллаев Ж.Х. Геометрические свойства единичного шара рефлексивных сильно гранево симметричных пространств // Узб. матем. журн. Ташкент, 2009. №2. С. 186-194.
- [7] Seypulaev J.X. Characterizations of geometric tripotents in reflexive complex SFS-spaces // Lobachevskii Journal of Mathematics. 2019. Vol. 40. № 12. P. 2111-2115.