

EIGENVALUES AND EIGENFUNCTIONS OF CERTAIN INTEGRAL OPERATORS

Termez University of Economics and Service

70540101-Mathematics Master's Student

Choriyeva Sarvinoz Mamatmurodovna

sarvinozchoriyeva@gmail.com

Abstract: This paper investigates the problem of determining eigenvalues and eigenfunctions of certain classes of integral operators. Special attention is given to Fredholm and Volterra integral operators with continuous and separable kernels. Using analytical methods, the spectral properties of these operators are studied, and illustrative examples are provided. The obtained results play an important role in functional analysis, integral equation theory, and applications in mathematical physics.

Keywords: integral operator, eigenvalue, eigenfunction, Fredholm operator, Volterra operator, spectral theory.

1. Introduction

Integral operators are fundamental objects in functional analysis and appear naturally in many areas of applied mathematics, including mathematical physics, boundary value problems, and signal processing. The study of eigenvalues and eigenfunctions of integral operators provides deep insight into the structure of solutions of integral and integro-differential equations.

In this paper, we focus on certain classes of integral operators and analyze their spectral properties. In particular, Fredholm and Volterra type operators are examined due to their theoretical importance and wide range of applications.

2. Preliminaries

Let $X=L^2[a,b]X = L^2[a,b]X=L^2[a,b]$ be a Hilbert space. Consider an integral operator $T:X\rightarrow XT: X\rightarrow XT:X\rightarrow X$ defined by

$$(Tf)(x)=\int_a^b K(x,t)f(t) dt, (Tf)(x)=\int_a^b K(x,t)f(t) dt, (Tf)(x)=\int_a^b K(x,t)f(t) dt,$$

where $K(x,t)K(x,t)K(x,t)$ is a given kernel function. A scalar $\lambda\in C\backslash\{\lambda\}$ is called an eigenvalue of the operator T if there exists a non-zero function $f\in X$ such that

$$Tf=\lambda f, Tf=\lambda f, Tf=\lambda f.$$

The function f is referred to as the corresponding eigenfunction.

3. Volterra Integral Operators

Consider the Volterra operator defined by

$$(Tf)(x)=\int_0^x f(t) dt, (Tf)(x)=\int_0^x f(t) dt, (Tf)(x)=\int_0^x f(t) dt.$$

This operator is compact and nilpotent in nature. The eigenvalue problem

$$\int_0^x f(t) dt=\lambda f(x), \int_0^x f(t) dt=\lambda f(x), \int_0^x f(t) dt=\lambda f(x)$$

leads, after differentiation, to the differential equation

$$f(x)=\lambda f'(x), f(x)=\lambda f'(x), f(x)=\lambda f'(x).$$

Under natural boundary conditions, it can be shown that only the trivial solution exists. Hence, the Volterra operator has no non-zero eigenvalues, and its spectrum consists solely of zero.

4. Fredholm Integral Operators with Separable Kernels

Now consider a Fredholm integral operator of the form

$$(Tf)(x) = \int_0^1 x f(t) dt. (Tf)(x) = \int_0^1 x t f(t) dt. (Tf)(x) = \int_0^1 x t f(t) dt.$$

The kernel $K(x,t) = xtK(x,t) = xt$ is separable, allowing the operator to be rewritten as

$$(Tf)(x) = x \int_0^1 t f(t) dt. (Tf)(x) = x \int_0^1 t f(t) dt. (Tf)(x) = x \int_0^1 t f(t) dt.$$

The eigenvalue equation becomes

$$x \int_0^1 t f(t) dt = \lambda f(x). x \int_0^1 t f(t) dt = \lambda f(x). x \int_0^1 t f(t) dt = \lambda f(x).$$

It follows that the eigenfunction is proportional to $f(x) = xf(x) = xf(x) = x$, and substitution yields the eigenvalue

$$\lambda = \int_0^1 t^2 dt = 1/3. \lambda = \int_0^1 t^2 dt = 1/3. \lambda = \int_0^1 t^2 dt = 1/3.$$

Thus, the operator has a single non-zero eigenvalue $\lambda = 1/3$.

5. Discussion

The examples considered demonstrate how the structure of the kernel influences the spectral properties of integral operators. Volterra operators exhibit purely trivial spectra, whereas Fredholm operators with separable kernels possess discrete eigenvalues. These results are consistent with general compact operator theory.

6. Conclusion

In this paper, the eigenvalue problems for certain integral operators were analyzed. By examining Volterra and Fredholm type operators, it was shown that the nature of the kernel plays a decisive role in determining spectral properties. The presented methods and results can be extended to more general classes of integral operators and may serve as a foundation for further analytical and numerical investigations.

References

1. Kress R. *Linear Integral Equations*. Springer, New York, 2014.
2. Kreyszig E. *Introductory Functional Analysis with Applications*. Wiley, New York, 1978.
3. Atkinson K.E. *The Numerical Solution of Integral Equations of the Second Kind*. Cambridge University Press, 1997.
4. Tricomi F.G. *Integral Equations*. Dover Publications, New York, 1985.
5. Gohberg I., Goldberg S., Kaashoek M.A. *Basic Classes of Linear Operators*. Birkhäuser, Basel, 2003.
6. Hackbusch W. *Integral Equations: Theory and Numerical Treatment*. Birkhäuser, Basel, 1995.