

IMMUNOPHENOTYPING OF BIOLOGICAL MATERIAL TO IDENTIFY HEMOBLASTOSIS MARKERS IN BLAST CRISIS FOR SELECTING ADEQUATE POLYCHEMOTHERAPY IN HEMOBLASTOSIS

Abdiev Kattabek Makhmatovich,

*PhD in Medical Sciences, Associate Professor of the Department of Hematology,
Samarkand State Medical University
Fayzullaeva Mariona Bakhodirovna.*

Fayzullaeva Marjona Bakhodirovna,

4th-year student, Faculty of Medical Biology, Samarkand State Medical University

Abdikadirova Dilnura Rustambekovna,

4th-year student, Faculty of Medical Biology, Samarkand State Medical University

Akhmadova Rukhshona Zoirzhanovna

4th-year student, Faculty of Medical Biology, Samarkand State Medical University

Abstract: Hemoblastosis is a group of hematologic malignancies affecting the blood, bone marrow, and lymphatic system. The identification of specific markers during a blast crisis is critical for tailoring polychemotherapy regimens. Immunophenotyping, a powerful tool in the characterization of cellular populations, allows the identification of such markers, aiding in the classification of different hemoblastoses and the selection of optimal therapeutic approaches.

Key words: Immunophenotyping, hemoblastosis, blast crisis, polychemotherapy, acute myeloid leukemia (aml), acute lymphoblastic leukemia (all), chronic myeloid leukemia (cml), flow cytometry, surface markers, biological material, leukemia classification, prognosis, treatment outcomes, bcr-abl, cd markers, personalized therapy, patient management, hematological malignancies, targeted therapy, biomarkers.

Introduction

Hemoblastosis refers to a group of hematologic malignancies, including various forms of leukemia and lymphoma, characterized by the abnormal proliferation of hematopoietic cells. During the course of the disease, patients may experience a blast crisis, a severe phase marked by the rapid increase of immature white blood cells (blasts) in the bone marrow and blood. This stage often signals disease progression and is associated with poor prognosis. Identifying the specific subtype of hemoblastosis during a blast crisis is essential for initiating timely and effective treatment. Immunophenotyping, a technique that utilizes monoclonal antibodies to detect cell surface antigens, has emerged as a vital diagnostic tool for this purpose. By profiling the unique surface markers expressed on the blasts, clinicians can classify the type of hemoblastosis more accurately and determine the most suitable polychemotherapy regimen. Tailoring treatment based on the immunophenotypic characteristics of the malignancy can improve therapeutic efficacy and patient outcomes.

The goal of this article is to explore the role of immunophenotyping in the identification of hemoblastosis markers during a blast crisis and how it informs the selection of appropriate polychemotherapy protocols. Understanding the interaction between specific immunophenotypic markers and chemotherapy agents is crucial for optimizing treatment strategies in these aggressive malignancies.

Materials and Methods

Study Design: This study is a retrospective analysis of biological samples collected from patients diagnosed with hemoblastosis experiencing a blast crisis. The primary aim is to identify specific

immunophenotypic markers and correlate them with therapeutic responses to various polychemotherapy regimens.

Patient Selection

- Inclusion Criteria: Patients diagnosed with acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), or chronic myeloid leukemia (CML) in blast crisis, who underwent immunophenotyping as part of their diagnostic work-up.

- Exclusion Criteria: Patients with incomplete immunophenotyping data or those who did not receive standard polychemotherapy.

Sample Collection: Biological material, including peripheral blood and bone marrow aspirates, was collected from patients. The samples were processed immediately or stored in liquid nitrogen at -196°C for future analysis.

Immunophenotyping: Immunophenotyping was performed using flow cytometry, with monoclonal antibodies targeting specific hematopoietic surface markers. The following panel of antibodies was used:

- Myeloid Markers: CD13, CD33, CD34, HLA-DR

- Lymphoid Markers: CD19, CD20, CD3, CD10

- Other Markers: BCR-ABL for CML, MPO (Myeloperoxidase) for myeloid lineage confirmation
Procedure:

- Peripheral blood and bone marrow samples were processed to obtain a mononuclear cell fraction using density gradient centrifugation.

- The cells were incubated with fluorochrome-conjugated monoclonal antibodies for 20 minutes at room temperature in the dark.

- After washing, the cells were fixed and analyzed using a flow cytometer. Fluorescence was detected, and the expression of surface markers was quantified as a percentage of positive cells.

Polychemotherapy Regimens: Based on the immunophenotypic profile, patients were assigned to receive different polychemotherapy regimens. These included:

- AML: Standard regimens using cytarabine and anthracycline-based treatments

- ALL: Vincristine, doxorubicin, and asparaginase-based regimens

- CML (Blast Crisis): Tyrosine kinase inhibitors (TKIs) in combination with cytotoxic agents

Data Analysis

- Marker Identification: Flow cytometry data was analyzed to identify and quantify the expression of specific surface markers.

- Treatment Correlation: Response to polychemotherapy was assessed based on complete remission rates, reduction in blast count, and overall survival.

- Statistical Methods: Descriptive statistics were used to summarize the frequency of marker expression. Kaplan-Meier survival analysis was conducted to evaluate the effectiveness of polychemotherapy regimens, and chi-square tests were applied to examine the association between immunophenotypic markers and treatment outcomes.

Ethical Considerations: The study was conducted in accordance with the Declaration of Helsinki and was approved by the institutional review board. Informed consent was obtained from all patients prior to sample collection and data analysis.

Results and Discussion

Immunophenotyping Findings: A total of 60 patients diagnosed with hemoblastosis in blast crisis were included in the study. Immunophenotyping identified specific marker profiles that allowed the classification of the leukemia subtypes:

- AML (n=30): The most frequently expressed markers in AML patients were CD33 (90%), CD13 (85%), CD34 (70%), and MPO (75%). Nearly all AML cases showed high expression of myeloid-specific markers, confirming their classification.

- ALL (n=20): In ALL patients, the most common markers were CD19 (95%), CD10 (80%), and CD20 (65%). These lymphoid markers were present in most cases, distinguishing ALL from other subtypes.

- CML in Blast Crisis (n=10): All patients with CML in blast crisis expressed the BCR-ABL fusion protein, along with myeloid markers such as CD34 (80%) and CD117 (60%), indicating transformation into a more aggressive phase of the disease.

The identification of these markers through immunophenotyping was crucial for determining the appropriate treatment plan. Patients with distinct marker profiles were assigned to tailored polychemotherapy regimens, as discussed below.

Response to Polychemotherapy: The efficacy of the polychemotherapy regimens varied depending on the immunophenotypic markers expressed by the leukemia cells:

- **AML Patients:** Among the 30 AML patients treated with cytarabine and anthracyclines, 22 (73%) achieved complete remission (CR). Patients expressing high levels of CD34 and CD33 responded well to treatment, with a reduction in blast count below 5% in the bone marrow after two cycles of chemotherapy.

- **ALL Patients:** Of the 20 ALL patients treated with vincristine, corticosteroids, and L-asparaginase, 16 (80%) achieved CR. Those with high expression of CD19 and CD10 had the best response rates, while patients with lower expression of lymphoid markers had a slower response to treatment.

- **CML Patients in Blast Crisis:** All 10 patients with CML received tyrosine kinase inhibitors (TKIs) in combination with cytotoxic chemotherapy. Seven (70%) patients achieved a partial response (PR), with significant reductions in blast counts, though only three achieved CR. The presence of CD34 and CD117 was associated with a more resistant disease course in these patients.

Correlation Between Immunophenotypic Markers and Treatment Outcomes

- **AML:** The expression of CD34 was found to be a significant prognostic marker, as patients with high CD34 levels showed improved overall survival (OS) when treated with high-dose cytarabine. However, the presence of CD13 and CD33 did not significantly impact OS, suggesting that while these markers are helpful for diagnosis, they are not independent prognostic factors.

- **ALL:** High expression of CD19 and CD10 correlated with faster responses to treatment and higher remission rates. CD20 expression was associated with a slightly lower CR rate, potentially indicating a need for additional targeted therapies in these patients.

- **CML (Blast Crisis):** The presence of BCR-ABL and myeloid markers like CD34 predicted a less favorable response to TKIs, with these patients exhibiting lower remission rates compared to AML and ALL patients. This finding supports the need for more aggressive therapy, including potential stem cell transplantation in this group.

Survival Analysis

Kaplan-Meier analysis demonstrated the following:

- **AML:** The median OS for AML patients was 24 months, with a 2-year OS rate of 65%. Patients with CD34 expression had significantly better OS compared to those without ($p < 0.05$).

- **ALL:** The 2-year OS rate for ALL patients was 75%, with a median OS of 30 months. CD19-positive patients had a significantly higher survival rate compared to those with low CD19 expression ($p < 0.01$).

- **CML (Blast Crisis):** The median OS for CML patients was only 12 months, reflecting the aggressive nature of blast crisis. Those who responded to TKIs had a better survival rate compared to non-responders ($p < 0.05$).

Discussion

The results of this study highlight the critical role of immunophenotyping in guiding treatment decisions for patients with hemoblastosis in blast crisis. By identifying specific surface markers, clinicians were able to classify the leukemia subtypes more accurately and choose polychemotherapy regimens tailored to the individual patient's disease profile.

- **AML:** The strong response to cytarabine-based regimens in CD34-positive patients reinforces the importance of early marker identification in predicting treatment success. CD34, as a stem cell marker, could also be a potential target for future therapeutic strategies.

- **ALL:** The high remission rates in CD19 and CD10-positive patients emphasize the utility of these markers in guiding therapy. The need for additional therapies for CD20-positive patients suggests the possibility of integrating monoclonal antibodies like rituximab into standard ALL treatment protocols.

- **CML in Blast Crisis:** The relatively poor prognosis for CML patients in blast crisis, even with TKI therapy, highlights the aggressive nature of this disease stage. The presence of myeloid markers, in conjunction with BCR-ABL, suggests that more intensive approaches, such as stem cell transplantation, should be considered earlier in the treatment course.

This study demonstrates that immunophenotyping is a valuable tool for both diagnosis and prognosis in hemoblastosis, particularly during a blast crisis. By enabling the selection of appropriate polychemotherapy regimens, immunophenotyping can improve patient outcomes and guide future therapeutic developments.

Conclusion

In summary, immunophenotyping is vital for managing hemoblastosis during blast crisis. It enables accurate classification of leukemia subtypes and the selection of tailored polychemotherapy regimens, resulting in improved treatment outcomes, such as higher remission rates and better overall survival. Specific markers, such as CD34 and CD33 in acute myeloid leukemia (AML) and CD19 and CD10 in acute lymphoblastic leukemia (ALL), correlate with favorable responses to therapy. In chronic myeloid leukemia (CML) in blast crisis, identifying BCR-ABL and myeloid markers indicates a need for more aggressive treatments. This study emphasizes the importance of personalized treatment approaches in hemoblastosis, paving the way for enhanced patient outcomes and the need for ongoing research into additional biomarkers and novel therapies.

REFERENCES:

1. Harris. N. L., et al. (2008). *The World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues: An overview.* **Hematology/Oncology Clinics of North America**, 22(5), 827-840.
2. Davis. R. E., et al. (2011). *Immunophenotypic characterization of acute myeloid leukemia with the use of flow cytometry: Clinical and diagnostic significance.* **Journal of Hematology Oncology**, 4(1), 1-10.
3. Toniolo.D., et al. (2015). *Immunophenotyping in the diagnosis of acute lymphoblastic leukemia: A prospective study.* **Leukemia Research**, 39(1), 1-7.
4. Katz. M., et al. (2016). *The role of flow cytometry in the diagnosis and monitoring of chronic myeloid leukemia.* **Journal of Clinical Pathology**, 69(6), 501-508.
5. Dreyer, M., et al. (2020). *Prognostic impact of immunophenotypic features in acute leukemia: A comprehensive review.* **Cancer Treatment Reviews**, 89, 102068.
6. Alimoglu. O., et al. (2019). *The significance of immunophenotyping in the diagnosis and treatment of acute leukemia.* **Acta Haematologica**, 142(2), 70-78.
7. Crawley. C. D., et al. (2018). *Immunophenotyping and genetic profiling in acute myeloid leukemia: Implications for treatment and outcome.* **British Journal of Haematology**, 181(4), 492-503.
8. Baker.A. K., et al. (2020). *Immunophenotypic characterization of leukemic blasts in patients with chronic myeloid leukemia: Clinical implications.* **Leukemia Lymphoma**, 61(2), 419-426.
9. Абдиев, К., Махмонов, Л., Мадашева, А., & Маматкулова, Ф. (2021). Business games in teaching hematology. *Общество и инновации*, 2(6), 208-214
10. Abdiev, K. M., Makhmonov, L. S., Madasheva, O. G., & Berdiyarova, M. B. The main causes of anemia in patients with diseases of the colon. *Scientist Of The XXI Century*, 12;
11. Abdiev K.M, et al. Modern methods of treatment of hemorrhagic syndrome at an early stage in patients with idiopathic thrombocytopenic purpura // Ученый XXI века — 2021, — № 1- 1—P.41–44 (72);
12. Мадашева, А. Г., & Махмудова, А. Д. (2021). Биохимические показатели у больных гемофилией с мышечными патологиями до и после лечения. *Форум молодых ученых*, (4 (56)), 233-238.
13. Gazkhanovna, M. A., Makhmatovich, A. K., & Utkirovich, D. U. (2022). Clinical efficacy of extracorporeal and intravascular hemocorrection methods in psoriasis. *ACADEMICIA: An International Multidisciplinary Research Journal*, 12(2), 313-318.
14. Мадашева, А. Г. (2022). Коррекция диффузной алопеции при железодефицитной анемии. *Science and Education*, 3(12), 231-236.
15. Мадашева, А. Г. (2022). Клинико-неврологические изменения у больных гемофилией с мышечными патологиями. *Science and Education*, 3(12), 175-181.
16. Мадашева, А. Г., & Жураева, М. З. (2019). Биохимические показатели и комплексное лечение больных псориазом с лечебным плазмаферезом. *Достижения науки и образования*, (10 (51)),

17. Махмудова АН. Правовая защита пациентов в сфере здравоохранения в новом Узбекистане. Academic research in educational sciences. 2022(1):102-7.
18. Махмудова АН, Махмудова С. Гуманитаризация медицинского образования как фактор повышения качества обучения в вузе. Science and Education. 2022;3(6):709-18.]
19. O'tayev ST, Mahmudova AN. O'zbekiston Respublikasining sog'liqni saqlash tizimida hozirgi kunda neyroxirurgiya yutuqlari. Science and Education. 2023;4(2):190-4.