

FINDING THE ROOTS OF AN EQUATION USING THE CHORD METHOD

S. Khaidarova

Candidate of Technical Sciences, Associate Professor of Kokand State University, Uzbekistan, E-mail: hay-vb1952@umail.uz

Annotation: The article describes the chord method for approximate solution of algebraic equations. A program for solving the problem in Pascal is provided.

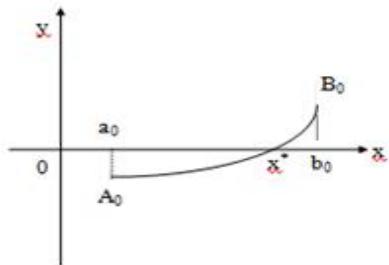
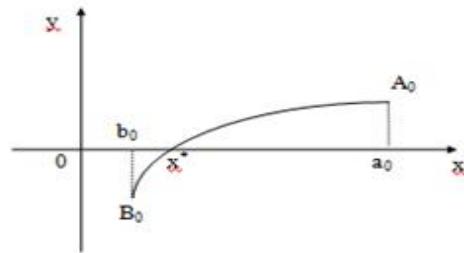
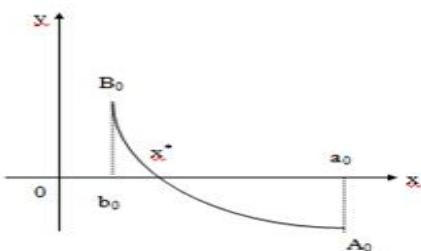
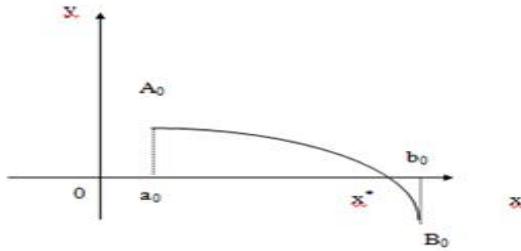
Keywords and expressions: fixed point, zero approximation

Let there be an equation $f(x) = 0$ and the root of the equation x^* lies on the segment $[a, b]$, that is $x^* \in [a, b]$.

To apply the chord method, the following conditions must be met:

- 1) The function $f(x)$ is continuous on the interval $[a, b]$ with its first and second derivatives;
- 2) The function $f(x)$ takes opposite signs at the ends of the segment $[a, b]$, that is $f(a) \cdot f(b) < 0$
- 3) Derivatives and functions $f(x)$ retain a certain sign on the interval $[a, b]$. This means that the function $f(x)$ is monotone and the root x^* is unique.

The geometric meaning of the chord method is that the graph of the function $f(x)$ on the segment $[a, b]$ is replaced by a chord. There can be 4 cases for the function graph:

1) $f'(x) > 0, f''(x) > 0$ 2) $f'(x) > 0, f''(x) < 0$ 3) $f'(x) < 0, f''(x) > 0$ 4) $f'(x) < 0, f''(x) < 0$ 

Let's consider the first case, then the graph of the function has the following form:

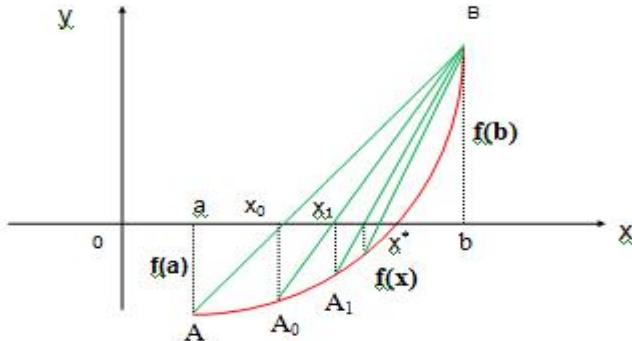


Fig.1. Geometric illustration of the chord method

Let x^* - be the root of the equation and x_0 its approximate value. In order to find the approximate value of x_0 , the graph of the function $f(x)$ on the segment $[a, b]$ is replaced by the chord AB . We write the equation of the line passing through the points $A(a, f(a))$ and $B(b, f(b))$:

$$\frac{x - a}{b - a} = \frac{y - f(a)}{f(b) - f(a)} \quad (1)$$

Since $x_0 \in [a, b]$ lies on the line AB , we can find it from equation (1) by substituting the values $x = x_0$ and $y = 0$:

$$x_0 = a - \frac{f(b)}{f(b) - f(a)}(b - a) \quad (2)$$

If the condition $f(b) f''(b) > 0$ is met, point b is fixed and then formula (2) can be used to find the zero approximation of x_0 .

The equation of the straight line passing through points $A(a, f(a))$ and $B(b, f(b))$ can be written in this form:

$$\frac{x - b}{a - b} = \frac{y - f(b)}{f(a) - f(b)} \quad (1')$$

For $x = x_0$ and we $y = 0$ get:

$$x_0 = b - \frac{f(b)}{f(b) - f(a)}(b - a) \quad (2')$$

If the condition $f(a) f''(a) > 0$ is met, the point a is stationary and then formula (2') can be used to find the zero approximation of x_0 .

To find the approximation x_1 , we write the equation of the line A_0B and for $x=x_1$ and $y=0$ we get:

$$x_1 = x_0 - \frac{f(x_0)}{f(b) - f(x_0)}(b - x_0)$$

From the equation of straight line A_1B at $x=x_2$ and $y=0$ we obtain:

$$x_2 = x_1 - \frac{f(x_1)}{f(b) - f(x_1)}(b - x_1)$$

Continuing the process, we find the n -th approximation:

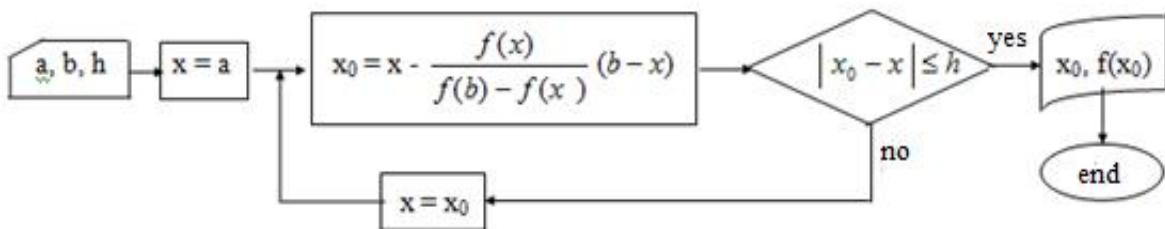
$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f(b) - f(x_{n-1})} (b - x_{n-1}) \quad (3)$$

Calculations continue until the condition $|x_n - x_{n-1}| < h$ is met.

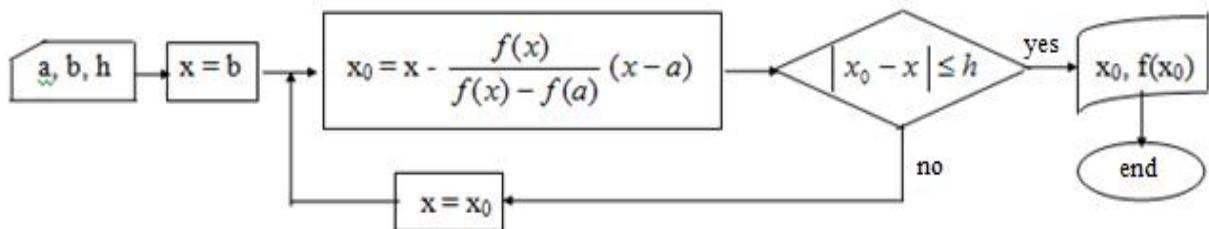
There is a value of n such that $\lim_{n \rightarrow \infty} x_n = x^*$ satisfies the condition $|x_n - x^*| < h$ and the calculations stop.

The block diagram of the chord method algorithm is as follows:

- 1) if point b is fixed, i.e. when the condition $f(b) f''(b) > 0$ is met, the block diagram has the following form:



- 2) if point a is fixed, i.e. when the condition $f(a) f''(a) > 0$ is met, the block diagram has the following form:



Example: Find the root of the equation $f(x) = x^4 + 5x^2 + 10x - 3 = 0$ on the segment $[0,1]$ with an accuracy of $h=0.001$ using the chord method.

Solution: We find the first and second derivatives:

$$f'(x) = 4x^3 + 10x + 10, \quad f''(x) = 12x^2 + 10$$

$$f(0)f''(0) < 0 \text{ and } f(1)f''(1) > 0$$

Since $f(1)f''(1) > 0$, point B is fixed and calculations are carried out according to the following formula:

$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f(b) - f(x_{n-1})} (b - x_{n-1})$$

In this case $x_0 = a$, so we will use the first type of block diagram.

The Pascal program looks like this:

program chord method_B fixed;

var a,b,x,h,x0:real;

label return, answer;

function fx(x:real):real;

begin fx:=x*x*x*x+5*x*x+10*x-3

```
end;
begin
writeln('a='); readln(a);
writeln('b='); readln(b);
writeln('enter precision'); readln(h);
x:=a;
return: x0:=x-fx(x)/(fx(b)-fx(x))*(b-x);
if abs(x0-x)<=h then goto answer
else x:=x0; goto return;
answer:writeln(x0,',',fx(x0));
end.
```

After executing the program, enter the values 0,1,0.001 sequentially from the keyboard and press the ENTER button each time. We get the following answer:

x= 0.264665, F(x) = 0.797911E-03

REFERENCES:

1. C.C. Irisqulov va b. Sonli usullar va algoritmlar. “Namangan” nashriyoti, 2013