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Abstract. This paper discusses the comparative error-correcting ability of block codes such as 

Hamming, Golay, BCH, and Reed-Solomon codes. The introduction emphasizes the 

importance of ensuring reliable data transmission under real-world interference conditions such 

as thermal noise, multipath propagation, and impulse interference. Methods for improving noise 

immunity are discussed, including convolutional and block coding. The paper presents 

analytical formulas for calculating the probability of errors in decoded messages using various 

codes. The calculation results confirm that the error-correcting ability depends on the code 

parameters and the error probability in the channel. A study is conducted on the efficiency of 

codes in the presence of burst errors of different lengths, including conditions under which 

decoding remains successful. The paper emphasizes that the choice of the optimal code is 

determined by the specifics of the telecommunication system and the characteristics of the 

communication channel. 

 

introduction 

Information plays an increasingly important role in all types of human activity. Recently, the 

requirements for information transmission systems have increased dramatically. It is necessary to 

transmit ever greater volumes of information over ever greater distances at ever greater speeds. At 

the same time, the transmitter's energy resources are usually limited. The requirements for the 

reliability of data transmission are also growing. 

In recent years, methods of digital processing and transmission of information in various 

telecommunication systems have significantly developed. One of the most important functions in 

the operation of such systems is to ensure reliable protection of data from interference. The radio 

channel is a weak link in data transmission systems, since it is in it that transmitted signals are 

subject to distortion and attenuation due to the negative impact of numerous factors. Interference 

and fading reduce the reliability of information transmission. Increasing the reliability of 

information transmitted over a communication channel can be organized in various ways, for 

example, by increasing the transmitter power, improving the sensitivity of the receiver, increasing 

the gain of antennas. The implementation of these methods usually requires significant material 

costs, and most importantly, does not ensure an increase in the reliability of transmitted 

information with frequency-selective fading. Increasing the noise immunity of information is 

achieved in various ways, but many of them are ineffective for one reason or another. For example, 

increasing the transmitter power is limited by strict requirements for electromagnetic compatibility 

of radiation sources, and multiple repetition of transmitted blocks leads to a significant increase in 

channel occupancy and a corresponding increase in the information processing time [1]. 

At present, the task of ensuring the reliability of information transmission is solved in most cases 

by using noise-resistant coding, which is a class of signal transformations performed to improve 

the quality of communication. Modern people are surrounded by devices that use noise-resistant 

coding algorithms in their work. Noise-resistant coding technologies have become a mandatory 

element of data storage and transmission systems. The basis of modern coding theory is the work 

of V.A. Kotelnikov and K.E. Shannon. Subsequently, the theory of noise-resistant coding was 
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developed by many researchers. However, the problem of an unambiguous choice of the type of 

coding for a specific information transmission channel has not yet been solved. 

Currently, there are a significant number of options for constructing and decoding methods for 

error-correcting codes that are capable of correcting both single and group errors. At the same 

time, the characteristics of practical implementations of error-correcting codes lag significantly 

behind the theoretical limits. Significant difficulties arise in satisfying the requirements for code 

efficiency in order to achieve the constantly growing requirements for data transmission and 

storage systems. 

Reasons for deterioration of signal transmission quality 

The source of interference in an ideal channel is thermal noise generated in the receiver [2, 3, 4]. 

Thermal noise typically has a constant spectral power density over the entire signal band and a 

Gaussian voltage probability density function with zero mean. The signal in an ideal channel 

attenuates with distance in exactly the same way as when propagating in ideal free space. The 

signal power decreases proportionally to the square of the distance. With such ideal propagation, 

the signal power is quite predictable. 

Additional sources of losses in a real radio channel are natural and artificial sources of noise and 

interference, the negative impact of which is often more significant than the thermal noise of the 

receiver [5, 6, 7]. 

In radio communication, signal propagation occurs in the atmosphere and near the earth's surface. 

A radio signal can travel from a transmitter to a receiver along multiple paths. This phenomenon, 

called multipath propagation, can cause fluctuations in the amplitude, phase, and angle of arrival 

of the received signal, which is called multipath fading. Fading causes random fluctuations in the 

signal. 

For a typical radio channel, the received signal consists of several discrete multipath components, 

resulting in a spreading of the signal over time (or signal dispersion). 

In the case of signal dispersion, the types of degradations due to fading are divided into frequency-

selective and frequency-non-selective. In the case of non-stationary channel behavior, the types of 

degradations due to fading are divided into fast and slow. 

In addition to independent errors, grouped errors may occur in the channel. They are formed in 

channels with memory. One of the main causes of such errors are interruptions that occur due to a 

smooth decrease in the signal level below the receiver's sensitivity threshold, when signal reception 

practically ceases. Interruptions can be caused by various activities, and some of them can even 

cause termination of a communication session. In addition, interruptions can be caused by 

equipment malfunctions, imperfect operation, measurement, etc. Interruptions and impulse 

interference are the main cause of grouped errors when transmitting discrete messages over various 

types of communication channels. Impulse interference is interference concentrated in time. It is 

a random sequence of pulses with random amplitudes and following each other at random time 

intervals, and the transient processes caused by them do not overlap in time. The most common 

causes of such interference are: switching connections in electronic equipment, interference from 

high-voltage lines, lightning discharges, and reception of reflected signals. 

Currently, convolutional codes are used in various digital data transmission and storage systems, 

in mobile and satellite communications [8]. Noise-immune codes are quite diverse and differ in 

the encoding-decoding method, the number of coded information bits, the introduced redundancy, 

and the number of errors corrected. The parameters of noise-immune codes are selected based on 

the characteristics of a specific digital communications system. 

Currently, there are three main understandings of efficiency: efficiency in the sense of 

effectiveness - this is the ability to produce an effect (result) of some actions, which cannot always 
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be measured using quantitative indicators; efficiency in the sense of productivity, performance, 

economy - this is an indicator of the effectiveness of activities, reflecting the amount of output per 

unit of costs (the fewer resources spent on achieving the planned results, the higher the 

productivity); efficiency in the sense of effectiveness, optimality - this is the ability to produce the 

planned result in the desired volume, can be expressed by a measure (percentage ratio) of the 

actually produced result to the standard/planned one. This measure focuses on the achievement as 

such, and not on the resources spent on achieving the desired effect. At the same time, the actions 

that produce a result will not necessarily be optimal, and what is optimal will not necessarily be 

economical. Only a combination of all these parameters means efficiency in the full sense of the 

word [9]. Quantitatively, efficiency is assessed using an efficiency indicator [10]. Efficiency 

indicators are the main numerical characteristics by which the quality of the system's functioning 

is assessed. The main indicators allow us to evaluate technological processes and operations in 

aggregate by all characteristics, while the private ones characterize only a limited number of 

properties. Determining the composition and content of the system of indicators necessary for 

conducting an efficiency assessment is a classic task of systems analysis [11, 12]. 

Based on the analysis of modern educational literature [1, 9, 11], in the part concerning error-

correcting coding, the main indicators are: 

- code rate; 

- probability of a bit error in a decoded information message; 

- energy gain from the use of error-correcting coding; 

- spent computing resources; 

- complexity of hardware implementation. 

The efficiency of error-correcting coding is assessed according to certain evaluation criteria. 

Criterion - 1) means for making a judgment; standard for comparison; rule for evaluation; 2) 

measure of the degree of closeness to the goal. 

The parameters of error-correcting codes must meet the characteristics of a specific 

communication system. There are no error-correcting codes that are best for all digital 

communication systems. Approaches to assessing the effectiveness of error-correcting codes may 

vary. 

One of the widespread and actively developing methods for increasing the efficiency of error-

correcting codes is to combine codes. Convolutional codes are one of the large classes of error-

correcting codes. 

Hamming codes form one of the best-known families of linear block codes [13, 14, 15, 16, 17]. 

For every natural number m ≥ 3, there exists a binary Hamming code with the following 

parameters: 

 

- length of code words 2 1mn = − ; 

- number of information bits 2 1mk m= − − ; 

- number of verification digits m n k= − ; 

- corrective ability 1t = , 
min 3d = . 

 

The Hamming code requires minimal redundancy for a given block length to correct one error. 

The Hamming code is a perfect code. 

The advantage of this code is its simplicity and, as a result, high encoding and decoding speeds. 

The disadvantage is the ability to correct only single errors. 

Golay code [18, 19, 20, 21, 22] is a perfect code with parameters n = 23, k = 12 and a minimum 

Hamming distance of seven. This code guarantees the correction of all three-bit errors. The 
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advantage of this code is a relatively simple decoding algorithm and the ability to withstand three-

bit errors. The Golay code (23,12) has a generating polynomial 
11 10 6 5 4 2( )g x x x x x x x x= + + + + + + . The Golay code is encoded by implementing polynomial 

division. Decoding the Golay code is usually done using the Meggitt decoder. 

Bose-Chaudhuri-Hocquenghem codes (here in after referred to as BCH) [23, 24, 25, 26] are a 

development of Hamming block codes. This type of code provides greater freedom in choosing 

the block length, degree of coding, alphabet size, and error correction capabilities. 

Theoretically, BCH codes can correct an arbitrary number of errors. In the case where code words 

consist of several hundred symbols, BCH codes provide a significant gain compared to other block 

codes of the same length and coding degree. Most often, BCH codes use code words of length 

2 1hn = − , where h = 3, 4, 5… For BCH codes, the maximum coding efficiency is achieved with 

coding degrees between 1/3 and 3/4. From a mathematical point of view, the construction of BCH 

codes is based on the operation of calculating the remainder from dividing the vector of the 

information word by a generating polynomial. 

The advantages of binary BCH codes are their diversity and good capabilities for combating single 

errors. The disadvantages are rather complex decoding algorithms (especially for long codes) and 

the inability to resist error bursts. 

The symbols of the BCH code are taken from a finite Galois field [27, 28, 29]. A field is a set of 

elements if for any elements of this set the operations of addition and multiplication are defined, 

and a number of axioms are satisfied (closedness, associativity, commutativity, distributivity). 

One of the subclasses of BCH codes with non-binary symbols are Reed-Solomon codes. The Reed-

Solomon code [30, 31, 32] is a non-binary case of the BCH code. The symbols of non-binary codes 

are multi-bit (m-bit) sequences. Reed-Solomon codes have a minimum distance 
min 1d n k= − +

and are capable of correcting ( )] / 2[t n k= − errors. In communication channels, the set of 

transmitted signals is always finite. Fields with a finite number of elements q are called Galois 

fields after their first researcher Evariste Galois and are denoted by GF(q). The number of elements 

of the field q is called the order of the field. Finite fields are used to construct a number of known 

codes and their decoding. The binary field GF(2) is the simplest Galois field, in which addition 

and multiplication operations are carried out according to the rules of arithmetic modulo 2. The 

binary field is used to construct binary BCH codes. The Reed-Solomon code considered in the 

research has a symbol size of one byte and is constructed using the Galois field GF(28 ). 

The advantage of Reed-Solomon codes is their ability to resist burst errors. The disadvantages are 

complex decoding algorithms. 

Comparison of the Correcting Capability of Block Codes 

The probability of occurrence of a bit error in a decoded information message is one of the main 

values characterizing the correcting ability of noise-resistant codes. In the research, the values of 

the probability of occurrence of an erroneous bit in a decoded information message pD will be used 

for a number of known block codes: Hamming, Golay, Reed-Solomon. 

For a code with parameters k = 4, n = 7, we will derive a formula for calculating the probability of 

an erroneous bit appearing in a channel, and then generalize the resulting formula, making it 

applicable to Hamming codes with other parameters. 

Let us denote the probability of having two erroneous bits out of n as P 2out of n. According to 

Bernoulli's formula [33, 34, 35, 36], it is equal to: 

 2 2

2

!
(1 )

2!( 2)

n

atn B B

n
P p p

n

−= −
−

 a) 
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For different values of the probability of occurrence of an erroneous bit in the channel, using 

formula (1), we obtain the following results: 

 

at pB = 10-2 : 𝑃2at7 = 2∙10-3 and 𝑃3at7 = 3.36∙10-5 ; 

at pB = 10-3 : 𝑃2at7 = 2.1∙10-5 and 𝑃3at7 = 3.49∙10-8 ; 
at pB = 10-4 : 𝑃2at7 = 2.1∙10-7 and 𝑃3at7 = 3.05∙10-11 . 

 

Based on the obtained results, it can be concluded that the probability of having two erroneous bits 

in a word significantly exceeds the probability of having three or more errors. In further 

calculations, only the case of having two erroneous bits in a code word will be considered. 

Let us find the probability of erroneous decoding of a Hamming code word if it contains two 

erroneous bits. 

In case of detection of a single error, the primitive Hamming code decoder outputs a three-bit word 

(syndrome) having seven non-zero values indicating the location of the erroneous bit in one of the 

seven bits of the code word. A zero-syndrome value indicates the absence of errors. In the presence 

of more than one erroneous bit, the syndrome indicates the incorrect location of the erroneous bit 

in the code word, and instead of correcting the error (by inverting the bit), a third erroneous bit 

appears in the code word. In the presence of two erroneous bits in the check part of the code word 

(which is discarded after decoding), the third erroneous bit appears in the information part of the 

word during decoding. That is, the occurrence of two errors in the code word in the data 

transmission channel always leads to erroneous decoding of the information. 

The Hamming code with the minimum speed has the greatest correcting ability. With the growth 

of speed (reduction of redundancy), the correcting ability of Hamming codes decreases. The 

obtained calculation results allow us to estimate the degree of deterioration of the correcting ability 

of Hamming codes with the growth of the code speed. In this case, the code speed with the growth 

of m tends to 1, i.e., it can vary from 0.57 to 1 (by 1.75 times). 

Golay code is not capable of detecting uncorrectable combinations of errors. 

An erroneous decoding of a code word with a small degree of approximation is equal to the 

probability of 4 errors out of 23 bits: 

 
4 23 4 4 19(23!/ (4! (23 4)!)) (1 ) 8855 (1 )BK B B B BP p p p p−=  −   − =   −   b) 

 

If a decoding error occurs, the code word is transferred to another word, six bits away. Then the 

probability of an erroneous bit appearing in the decoded information message is: 

 
4 19(6 / 23) 2310 (1 )D W B BP p p p=  =   −     c) 

 

As a result of calculation using formula (3.14), the following results were obtained: 

 

at pB = 10 -1 : PD =3.11∙10-2 ; 

at pB = 10 -2 : PD = 1.90∙10-5 ; 

at pB = 10 -3 : PD = 2.26∙10-9 ; 

at pB = 10 -4 : PD = 2.30∙10-13 . 
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Let us calculate the probability of occurrence of an erroneous bit in the decoded information 

message for the code for BCH (n = 31, k = 11, t = 5). Erroneous decoding of the code word is 

equal to the probability of occurrence of 6 errors out of 31 bits: 

 
6 31 6 6 25(31!/ (6! (31 6)!)) (1 ) 736281 (1 )BK B B B BP p p p p−=  −   − =   −   d) 

 

The distance between code words is ten, then if there is a decoding error, the code word goes into 

another, ten bits away. Then the probability of an erroneous bit appearing in the decoded 

information message is: 

 

 
6 25(10 / 31) 237510 (1 )D W B BP p p p=  =   −     e) 

 

Let us conduct a study of the efficiency of the Reed-Solomon code with different probabilities of 

occurrence of an erroneous bit in the channel. For the study, we will choose the Reed-Solomon 

code with parameters n = 9, k = 5,  

t = 2. Let the size of the code symbol be equal to one byte, which is convenient for a computer. 

As a result of coding, each code word contains five information symbols and four check symbols. 

The structure of such a code word containing nine symbols (72 bits). 

This code is capable of correcting any two erroneous symbols. The presence of three erroneous 

symbols results in a word decoding error, except for the case when all three erroneous bits are in 

the check part of the word. The probability of a word decoding error is approximately equal to the 

probability of three erroneous bits appearing in the message, provided that all three erroneous bits 

are located in different bytes of the message and at least one of them is in the information part of 

the word. Let us examine this case in more detail from the point of view of probability theory, 

based on the given probability of an erroneous bit appearing in the channel. The probability of this 

RRS event is equal to the sum of the probabilities of the following three events: 

1) in the verification part there are two “erroneous” bytes, in the information part – one; 

2) in the verification part there is one “erroneous” byte, in the information part – two; 

3) there are no “erroneous” bytes in the verification part, and three in the information part. 

Let us conduct a study of the efficiency of the codec-decoder in the presence of error packets in 

the received message [37]. Let us consider the probability of correct decoding of the message in 

the presence of error packets of different lengths. 

discussions 

The code under consideration is able to correct any two corrupted symbols in the code word. Error 

packets shorter than 10 bits always affect no more than two bytes and are successfully corrected. 

At a certain location, an error packet of 10 bits can already corrupt more than two symbols and if 

this affects at least one information bit, the decoder will not be able to correct the error. The 

probability of this event for a message of one code word is 0.11. With a further increase in the 

packet length, the probability of an error at the decoder output will increase. In the case when the 

message consists of one code word, the maximum packet length at which correct decoding is 

possible is 32 bits. The case when the error packet completely occupies the entire check part of the 

code word (4 bytes). The probability of an error at the decoder output in this case is 0.975 (Figure 

1). 

 

https://www.academicpublishers.org/journals/index.php/ijai


     INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE 
 
       ISSN: 2692-5206, Impact Factor: 12,23 

     American Academic publishers, volume 05, issue 04, 2025                                                                                                                                                    

     Journal: https://www.academicpublishers.org/journals/index.php/ijai  

 

  page 1149 

 
FIGURE 1. Error rates of different codes 

 

In the case of a message of 2 or more words, the maximum packet length for which correct 

decoding is possible is 48 bits. This is the case when the error packet completely occupies the 

entire check part of the code word and 2 bytes of the previous word. The error probability at the 

decoder output is 0.988 for the case when the message consists of 3 code words. Let us calculate 

the probability of an error packet of 10 bits in the case of only independent errors in the data 

transmission channel with the probability of an erroneous bit p. We will perform the calculations 

for the case of a code message of four code words, i.e. 288 bits in size. 

Reed-Solomon codes, which are able to resist error bursts, showed low efficiency in combating 

independent errors, especially at a high probability of occurrence of an erroneous bit. At the 

probability of occurrence of an erroneous bit in the data transmission channel equal to 1 10-2, 

Hamming codes demonstrated a higher correcting ability. 

One of the disadvantages of block codes is the fixed block length. This disadvantage is especially 

noticeable in the case of changing the length of the transmitted data packet. If the packet length is 

not divisible by the block length without remainder, then symbols that do not carry information 

have to be added to the information sequence, which leads to a decrease in coding efficiency [38]. 

CONCLUSION 

The Article calculates the correcting ability of common block codes. For the case of a non-binary 

block code, the ability to correct error bursts is shown. A well-known method for increasing the 

efficiency of noise-resistant codes by implementing the adaptation of code parameters to changes 

in the characteristics of the data transmission channel is puncturing. Here we provide some basic 

advice for formatting your mathematics, but we do not attempt to define detailed styles or 

specifications for mathematical typesetting. You should use the standard styles, symbols, and 

conventions for the field/discipline you are writing about.  

The Article considers a number of the most common block codes mentioned in different sections 

of the research. The error-correcting ability is calculated. For the case of a non-binary block code, 

the error-burst correction ability is estimated. The possibilities of block code puncturing are 

considered. When puncturing block codes, it is difficult to implement a significant change in the 

https://www.academicpublishers.org/journals/index.php/ijai


     INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE 
 
       ISSN: 2692-5206, Impact Factor: 12,23 

     American Academic publishers, volume 05, issue 04, 2025                                                                                                                                                    

     Journal: https://www.academicpublishers.org/journals/index.php/ijai  

 

  page 1150 

code rate. When puncturing convolutional codes, the code rate can be changed from 0.5 to 0.83 

(by 66%), and when puncturing block codes, from 0.555 to 0.625 (by 13%). Further, the 

possibilities for adapting the error-correcting ability in cascade connection of block codes are 

determined. 
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