
INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE

ISSN: 2692-5206, Impact Factor: 12,23
American Academic publishers, volume 05, issue 09,2025

Journal: https://www.academicpublishers.org/journals/index.php/ijai

page 813

VISUAL ANALYSIS AND TEACHING OF GRAPH STRUCTURES IN PYTHON

Utkirjon Mallayevich Saidov

Head, Department of Informatics, Samarkand State Pedagogical Institute; PhD.

Sevinch Normurod kizi Tursunbayeva

2nd-year student, Samarkand State Pedagogical Institute

E-mail: utkir.saidov.80@mail.ru

Abstract: The article examines effective approaches to learning and teaching graph theory
through Python-based tools, with particular attention to NetworkX as a modern library for
modeling, analyzing, and visualizing graphs. The paper motivates the pedagogical value of
interactive visualizations for grasping abstract notions such as paths, cycles, degree,
connectivity, and shortest routes. A sequence of classroom-ready examples is proposed to
develop students’ algorithmic thinking and problem‑solving skills. The capabilities of
NetworkX are discussed in comparison with commonly used software such as Gephi, Graphviz,
and the Desmos Graphing Calculator.

Keywords: graph, graph theory, NetworkX, Python library, Gephi, Graphviz, Desmos
Graphing Calculator.

Introduction.Graph theory plays a central role across computer science, mathematics,
and engineering. However, its abstract concepts are often difficult for students to internalize
without rich visualization and hands‑on experimentation. Python—owing to its clarity,
ecosystem, and low entry barrier—offers an ideal medium for inquiry‑based learning. Among
its libraries, NetworkX stands out for constructing both simple and complex graphs, running
classical algorithms, and producing publication‑quality visualizations.

In a pedagogical context, combining code and visuals helps students connect definitions to
behavior. For instance, shortest‑path problems (Dijkstra), minimum spanning trees, flows,
centrality measures, and community detection can be demonstrated interactively. Furthermore,
Python’s integration with web frameworks (e.g., Streamlit, Flask) enables lightweight
dashboards for classroom demonstrations and student projects.

Illustrative example (Dijkstra).

The following minimal snippet defines a weighted directed graph and computes the shortest
path between two vertices using Dijkstra’s
algorithm in NetworkX:

import networkx as nx

G = nx.DiGraph()

G.add_weighted_edges_from([

('A', 'B', 4),

https://www.academicpublishers.org/journals/index.php/ijai


INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE

ISSN: 2692-5206, Impact Factor: 12,23
American Academic publishers, volume 05, issue 09,2025

Journal: https://www.academicpublishers.org/journals/index.php/ijai

page 814

('A', 'C', 2),

('B', 'C', 1),

('B', 'D', 5),

('C', 'D', 8),

('C', 'E', 10),

('D', 'E', 2),

('D', 'Z', 6),

('E', 'Z', 3)

])

The compactness and readability of the code facilitate formative assessment in class: students
can hypothesize expected routes, run the algorithm, and interpret the output against the
structure of the graph. The same approach extends naturally to other topics such as minimum
spanning trees and flow algorithms.

Comparison with alternative tools.

While Gephi and Graphviz provide powerful visualization capabilities, they offer limited
algorithmic flexibility for step‑by‑step demonstrations. By contrast, NetworkX enables both
algorithmic experimentation and clear visuals within a single, reproducible notebook or script.
Desmos is helpful for quick illustrations but is not designed for general graph algorithms. For
large‑scale or highly interactive visual analytics, dedicated tools may be preferable; however,
for teaching and research prototypes NetworkX is well‑suited.

Pedagogical workflow.

A practical lesson can proceed as follows: (1) introduce core concepts with small, interpretable
graphs; (2) translate definitions into code with NetworkX; (3) visualize and annotate steps of an
algorithm; (4) let students modify parameters and predict outcomes; (5) conclude with a brief
reflection connecting the experiment to real‑world applications (routing, scheduling, social
networks). This cycle supports conceptual understanding and develops computational thinking.

Conclusion.

Modeling and visualizing graphs with Python—especially via NetworkX—provides an
effective didactic pathway for teaching graph theory. Integrating code, visualization, and
narrative explanations in a single environment enhances engagement, deepens understanding,
and bridges theory with authentic problem solving.

REFERENCES

1. Bondy, J. A., & Murty, U. S. R. (2008). Graph Theory.

2. Diestel, R. (2016). Graph Theory (5th ed.).

https://www.academicpublishers.org/journals/index.php/ijai


INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE

ISSN: 2692-5206, Impact Factor: 12,23
American Academic publishers, volume 05, issue 09,2025

Journal: https://www.academicpublishers.org/journals/index.php/ijai

page 815

3. West, D. B. (2001). Introduction to Graph Theory (2nd ed.).

4. Easley, D., & Kleinberg, J. (2010). Networks, Crowds, and Markets.

5. Barabási, A.-L. (2016). Network Science.

6. Friedman, J., Hastie, T., & Tibshirani, R. (2009). The Elements of Statistical Learning (2nd
ed.).

7. Gross, J. L., & Yellen, J. (2005). Graph Theory and Its Applications (2nd ed.).

8. Newman, M. E. J. (2010). Networks: An Introduction.

https://www.academicpublishers.org/journals/index.php/ijai

	VISUAL ANALYSIS AND TEACHING OF GRAPH STRUCTURES I

