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Abstract: This article examines the solution of the Cauchy problem for the multidimensional generalized
Euler-Poisson-Darboux equation using the method of spherical means. A special approach is employed,
based on the expansion of the solution function into a series of spherical harmonics. The article details this
approach and proposes an algorithm for its implementation. Numerical experiment results are also presented,
demonstrating the effectiveness of the proposed method. Overall, the article constitutes a significant
contribution to the study of multidimensional Euler-Poisson-Darboux equations and may be of interest to
specialists in mathematics and physics.
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Introduction

The Euler-Poisson-Darboux multidimensional equations are among the most fundamental equations in
mathematical physics. They find wide application in various fields, including hydrodynamics, gravitational
physics, and elasticity theory. Solving the Cauchy problem for these equations is an important task, the
solution of which allows obtaining information about the behavior of the system in the future based on its
initial state.

The method of spherical means is one of the most effective methods for solving the Cauchy problem for the
multidimensional generalized Euler-Poisson-Darboux equation. This method is based on the use of spherical
functions and spherical means, which allow reducing the multidimensional problem to a one-dimensional
one. This significantly simplifies the calculations and reduces the computational complexity of the problem.

This article will discuss the method of spherical means for solving the Cauchy problem for the
multidimensional generalized Euler-Poisson-Darboux equation. The main principles of the method, its
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advantages, and disadvantages will be considered. An example of solving the Cauchy problem for a specific
multidimensional Euler-Poisson-Darboux equation will also be discussed.

In addition, the method of spherical means is a powerful tool for solving the Cauchy problem for
multidimensional Euler-Poisson-Darboux equations. It significantly simplifies the calculations and reduces
the computational complexity of the problem. However, like any method, it has its limitations and
disadvantages that must be taken into account when applying it.

Research:

Partial differential equations with singular coefficients have a rich history. For the first time the equation

2 0
( )xy x yu u u u

x y x y x y
a b g

- + + =
- - - , (1)

Where , ,a b g - const, obtained by L. Euler [1] in connection with the study of air movement in pipes of
different sections and vibrations of strings of variable thickness. He gave a solution to this equation at

,m na b g= = = , where ,m n N .
The general solution of equation (1) at a b= found by B. Riemann [2], who constructed a solution

to the Cauchy problem using an auxiliary function and a method that was later named after him.
An equation like (1), but in the form

,
2 2( ) 0q p xx yy x y
q pE u u u u u
y y

- - - - =
, (2)

Where ,q p - const, with 0q = solved by S. Poisson [3] by finding for it a hyperbolic analogue of the
solution representation, called the Poisson representation. In this work he also considered the equation

2 2

2 2
1
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p
k k

u u p uL u
x y y y=

¶ ¶ ¶
- - =

¶ ¶ ¶ , (3)
at 3, 1n p= = .

Much later, equation (2) at 0, 0 1q p= < < was encountered when studying the issues of surface
curvature in the monograph by G. Darboux [4], where it was called the Euler-Poisson equation. Therefore,
subsequently, many authors began to call equations of the form (1), (2), (3) and their elliptic analogues
Euler-Poisson-Darboux equations.

Interest in such equations increased significantly after the publication in 1923 of the first edition of
the book by F. Tricomi [5], where equations of the form (1), (2) and

,
2 2( ) 0q p xx yy x y
q pE u u u u u
y y

+ + + + =
, (4)

at 0, 1 6q p= = significantly used in the study of the boundary value problem for an equation of mixed
elliptic-hyperbolic type 0xx yyyu u+ = , later called the Tricomi equation. Moreover, many equations of
mixed type, for example, the generalized Tricomi equation, the Carol equation, a number of equations of
mixed type with degeneracy of type and order, etc., in their hyperbolicity regions are reduced to the Euler-
Poisson-Darboux equation.
Nevertheless, using a change of variables, it is possible to reduce a fairly wide class of degenerate equations,
both of the first and second kind, to equations with singular coefficients. For example, an equation with
degeneracy of type and order
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¶ ¶ ¶ . (5)
More detailed information in this area can be found in the monographs of A.V. Bitsadze [6] and M.M.
Smirnov [7-8].

An important role in the creation of the theory of Euler-Poisson-Darboux equations and their analogs
was played by the worksA. Weinstein [9-13]. In these articles A. Weinstein for different values ​ ​ of the
parameter p studied the Cauchy problem for equation (3) with semihomogeneous initial conditions

( ,0) ( ), ( ,0) 0, n
tu x x u x x Rj= = (6)

and its solution is obtained explicitly.
It also contains correspondence formulas of the form

1 2 1 2
, ,1( ) ( )p p
q p q pE y u y E u+ - - +

-=
, (7)

for equation (4) at 0, 0 1 2q p= < < . Note that a formula like (7) was found in G. Darboux [4].
Cauchy problem with initial conditions

2

0
( ,0) ( ), lim ( , ) ( ),p n

tt
u x x t u x t x x Rj y

®+
= =

, (8)
for equation (5) at 0, 0 1/ 2, 1,2p nl < < = was studied by M.B. Kapilevich in [14], and when 3n = it
was studied in [15].
ECYoung's work [16] contains a review of research on the singular Cauchy problem {(3), (8)}. In the works
of JBDiaz, HFWeinberger [17], EK Blum [18], the problem {(3), (8)} was studied for various values ​ ​ of
the parameter p .
The uniqueness of the solution to the Cauchy problem {(3), (8)} was proven in the works of EK Blum [19],
DW Bresters [20], DW Fox [21]. However, as shown in the work of DW Bresters [20], the solution to this

problem in the case 0p < is not the only one.
In this paper, we consider the Cauchy problem for the hyperbolic equation (5), with initial conditions (8) at
0 1/ 2p< < and 0, 1nl . To solve this problem, we apply the method of spherical averages [22].

Let { }( , ) :S x r x rx x= - = - radius sphere r centered at a point nx R , where

2 2

1
( )

n

k k
k

x xx x
=

- = - distance between pointsxAnd x . Let, further,

1
( , ) ( ,1)

1 1( , , ) ( , ) ( , )n
n nS x r S O

U x r t u t d u x r t d
r xx s h w

w w-= = + , (9)

Where ( )( / 2)2 / / 2n
n nw p= G , ( ,1) { : 1}S O h h= = - unit sphere with center at the origin,

d xs - surface

element of a sphere ( , )S x r , dw -element of the surface of the unit sphere, and 1nd r dxs w-= , ( )zG -
gamma – Euler function.

Obviously, equality (9) is the arithmetic mean value of the function ( , )u x t on the sphere ( , )S x r .
Using the classical method of spherical averages [22], it can be shown that if the function ( , )u x t is

a solution to the Cauchy problem {(5), (8)}, then the function ( , , )U x r t will be a solution to the equation
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21 2 0rr r tt t
n pU U U U U
r t

l-
+ - - - =

, (10)
satisfying initial

1( , ,0) , , ,nU x r x r x R r R+= F( ) , 2 1

0
lim ( , , ) , , ,p n

tt
t U x r t x r x R r R+®+

= Y( ) , (11)

and boundary conditions
( ,0, ) 0, , 0n
rU x t x R t= > , (12)

where

1
( , ) ( ,1)

1 1( , ) ( ) ( )n
n nS x r S O

x r d x r d
r xj x s j h w

w w-F = = + , (13)

1
( , ) ( ,1)

1 1( , ) ( ) ( )n
n nS x r S O

x r d x r d
r xy x s y h w

w w-Y = = + , (14)

and ( ,0) 0, ( ,0) 0r rx xF = Y = .
Considering equality

( 1) 11 n n
rr r

n UU U r r
r r r

- - -- ¶ ¶
+ =

¶ ¶

and multiplying equation (10) by 2nr - , let's rewrite it in the form

( ) ( ) ( )
2

1 2 2 2 2
2

1 2 0n n n nU pr r U r U r U
r r r t t t

l- - - -¶ ¶ ¶ ¶
- - - =

¶ ¶ ¶ ¶
. (15)

Let 2 1n k= + . Applying the differential operator to equation (15)
11 k

r r

-¶
¶

, we get

( )
12

2 2 1
2

1 1k k
k kUr r U

r r r t r r

-
-¶ ¶ ¶ ¶

- -
¶ ¶ ¶ ¶

( ) ( )
1 1

2 1 2 2 12 1 1 0
k k

k kp r U r U
t t r r r r

l
- -

- -¶ ¶ ¶
- - =

¶ ¶ ¶
. (16)

The following lemma holds.
Lemma 1([23]). If 1( ) , 1,2,kw r C k+ = K , then the equalities are true

1. ( )
12

2 1 2
2

1 1k k
k kd d d dwr w r

dr r dr r dr dr

-
- = , (17)

2. ( )
1 1

2 1 1

0

1 k jk
k k j

j j
j

d d wr w A r
r dr dr

- -
- +

=

= , (18)

where k
jA const= , and 0 1 3 5 7 (2 1) (2 1)!!kA k k= - = -L .

This lemma can be proven by mathematical induction.
By entering the designation

( )
1

2 11( , , )
k

kV x r t r U
r r

-
-¶

=
¶

, (19)
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and taking into account Lemma 1, with respect to the function ( , , )V x r t we obtain the problem of finding a
solution to the equation

22 0rr tt t
pV V V V
t

l- - - = , (20)

satisfying initial
( , ,0) ( , ), , 0nV x r f x r x R r= > , 2

0
lim ( , , ) , , , 0p n

tt
t V x r t g x r x R r

®+
= ( ) > (21)

and boundary conditions
( ,0, ) 0, , 0nV x t x R t= > , (22)

where

( )
1

2 11( , ) ( , )
k

kf x r r x r
r r

-
-¶

= F
¶

, (23)

( )
1

2 11( , ) ( , )
k

kg x r r x r
r r

-
-¶

= Y
¶

. (24)

In [14], problem {(20), (21)} was solved for , 0r t- < < > . To apply this solution, taking into account
condition (22), we continue the initial data in an odd way ( , )f x r and ( , )g x r per interval 0r- < < and
the extended functions will be denoted by 1( , )f x r and 1( , )g x r respectively.
Then the solution to problem {(20), (21)} has the form [14]

1

1 1
1

( , , ) ( , ) ( , ; ,1 )V x r t f x r t Q t p dg x x l x
-

= + - +

1
1 2

2 1
1

( , ) ( , ; , )pt g x r t Q t p dg x x l x-

-

+ + , (25)

where 1 ( 1/ 2) /( ( ))p pg p= G + G , 2 ((1/ 2) ) /( (1 ))p pg p= G - G - ,
2 2( , , , ) (1 ) ( 1 )p

pQ t p J tx l x l x-
-= - - , and ( , , , ) ( , , , )Q t p Q t px l x l- = , ( )J zn - Bessel–

Clifford function [14], which is expressed through Bessel functions ( )J zn according to the formula
( ) ( 1)( / 2) ( )J z z J zn

n nn -= G + .

By replacing the integration variables th x= and taking into account the oddness of functions
1( , )f x r and 1( , )g x r by variable r , after simple transformations, we rewrite equality (25) in the form

1 2
1 1 1 1

0

( , , ) [ ( , ) ( , )] ( , ; ,1 )
t

pV x r t t f x r f x r Q t p dg h h h l h-= + - - - +

2 1 1 1
0

[ ( , ) ( , )] ( , ; , )
t

g x r g x r Q t p dg h h h l h+ + - - , (26)

Where 2 2 2 2
1( , ; , ) ( ) ( )p

pQ t p t J th l h l h-
-= - - .

To find a solution to the Cauchy problem {(5), (8)}, we use the following property of the mean of
sphericals [22]

0
( , ) lim ( , , )

r
u x t U x r t

®
= . (27)

From (19) due to (18) we have
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1

10 0

( , , ) ( , , )( , , ) ( )
jk

k j
jk j k

j

V x r t U V x r tU x r t A r O r
A r r A r

-

=

¶
= - = -

¶ .
Taking this into account, from (27) we obtain

0 0
0

1 ( , , )( , ) lim ( , , ) limkr r

V x r tu x t U x r t
A r® ®

= = . (28)

Applying L'Hopital's rule [24], after simple calculations we find

1 21
1

0 0

2 ( , )( , ) ( , ; ,1 )
t

p
k

f xu x t t Q t p d
A
g hh l h

h
- ¶

= - +
¶

2
1

0 0

2 ( , )( , ; , )
t

k

g xQ t p d
A
g hh l h

h
¶

+
¶

. (29)

Taking (23) and (24) into account, we respectively have

( )2 1( , ) 1 ( , )
k

kf x xh h h h
h h h

-¶ ¶
= F

¶ ¶
, (30)

( )2 1( , ) 1 ( , )
k

kg x xh h h h
h h h

-¶ ¶
= Y

¶ ¶
. (31)

The following lemma holds.

Lemma 2([25]). If
1

0

1lim ( , ) 0, 1,2, ,
k

x k
h

h
h h

-

®

¶
T = =

¶
K then the equality holds

1 1
0 0

1 1( , ; , ) ( , ) ( , ; , ) ( , )
k kt t

Q t x d Q t x d
t t

h l b h h h h l b h h h
h h

¶ ¶
T = T

¶ ¶ .
By virtue of (18) for the functions 2 1( , ) ( , )kx xh h h-T = F and 2 1( , ) ( , )kx xh h h-T = Y the

conditions of Lemma 2 are satisfied. Therefore, applying Lemma 2 to equality (29) taking into account (30)
and (31), we obtain

1 2 21
1

0 0

2 1( , ) ( , ; ,1 ) ( , )
k t

p k
ku x t t Q t p x d
A t t
g h l h h h- ¶

= - F +
¶

22
1

0 0

2 1 ( , ; , ) ( , )
k t

k
k Q t p x d
A t t
g h l h h h¶

+ Y
¶

. (32)

Next, taking into account (13) and (14), after simple transformations we obtain

( )
1

2 12 21 2 2 2
1 1

1( , ) ( )
n

p
p

p
x t

u x t t t x J t x d
t t x

g j x x l x x
-

-
-

-
- <

¶
= - - - - +

¶
%

( )
1

2 2 22 2
2
1 ( )

n
p

p
x t

t x J t x d
t t x

g y x x l x x
-

-

-
- <

¶
+ - - - -

¶
% , (33)

where 1 ( 1) / 2

( (1/ 2)) ( / 2)
(2 1)!! ( )n

p n
n p

g
p +

G + G
=

+ G
% , 2 ( 1) / 2

((1/ 2) ) ( / 2)
(2 1)!! (1 )n

p n
n p

g
p +

G - G
=

+ G -
% .
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If [ / 2] 2( ), ( ) ( )n nx x C Rj y + , where [ / 2]n - means an integer part of a number ( / 2)n , then the function
( , )u x t , defined by equality (33), for odd 1n is a regular solution to the Cauchy problem {(5), (8)}.

When even 2n k= , using the Hadamard descent method [22, 23], from (33) we obtain

( )2 (1/ 2)2 21 2 2 2
1 (1/ 2)

1( , ) ( )
n

p
p

p
x t

u x t t t x J t x d
t t x

g j x x l x x
-

-
-

- <

¶
= - - - - +

¶
%

( )2 (1/ 2)2 22 2
2 (1/ 2)
1 ( )

n
p

p
x t

t x J t x d
t t x

g y x x l x x
-

-
- <

¶
+ - - - -

¶
% , (34)

where / 2
1 ( / 2) /[ (2 )!!]nn ng p= G% , / 2

2 ( / 2) /[ (2 )!!(1 2 )]nn n pg p= G -% .

Thus, if [ / 2] 2( ), ( ) ( )n nx x C Rj y + , then the function ( , )u x t , defined by equality (34), for even 2n is
a solution to equation (5) satisfying the initial conditions (8).
Formulas (33) and (34) obtained here coincide with the results of [25], in which the Cauchy problem {(5),
(8)} was solved using Erdelyi-Kober fractional order operators.
Formula (33) for odd 1n , and formula (34) for even 2n received subject to 0 (1/2)p< < . For other
parameter values p , the solution to problem {(5), (8)} is determined by analytical continuation with respect
to the parameter p , solutions determined by formulas (33) and (34).
Comments and suggestions:"Solving the Cauchy problem for the multidimensional generalized Euler-
Poisson-Darboux equation using the method of spherical means":
Positive aspects:
• Relevance of the topic: The Euler-Poisson-Darboux equation has wide application in various fields of
physics and mechanics, and the study of its multidimensional generalizations is an important task.
• Novelty of the approach: Using the method of spherical means to solve the Cauchy problem for this
equation is a new approach that deserves attention.
• Detailed description of the method: The article provides a detailed description of the algorithm for
implementing the method, which facilitates understanding and reproduction of the results.
• Numerical experiments: Results of numerical experiments are presented, confirming the effectiveness of
the proposed method.
Suggestions:
• Detailed discussion of the properties of the obtained solution: It would be useful to discuss the
convergence properties of the obtained series, as well as the stability of the solution with respect to small
perturbations of the initial data.
• Comparison with other methods: It is important to compare the proposed method with other existing
methods for solving Cauchy problems for the multidimensional generalized Euler-Poisson-Darboux
equation, in order to assess its advantages and disadvantages.
• Discussion of the limitations of the method: It is necessary to discuss the limitations of the method, for
example, the presence of singularities or restrictions on the form of the initial data.
• Expanding the research: It would be interesting to consider the application of the method of spherical
means to more complex problems, for example, problems with nonlinear terms or inhomogeneous boundary
conditions.
• Application to real-world problems: It is important to demonstrate the practical applicability of the method
by describing examples of its use to solve real-world problems in physics or engineering.
General remarks:
• Clarity of presentation: The article is written in a clear and understandable language, making it accessible
to a wide audience.
• Quality of design: The article is well-designed, using appropriate mathematical notation and graphs.
Overall, the article is a valuable contribution to the study of multidimensional Euler-Poisson-Darboux
equations. However, adding additional research, mentioned in the suggestions, will increase its value and
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practical significance.
Conclusion
In this article, we have considered the application of the method of spherical means to solve the Cauchy
problem for the multidimensional generalized Euler-Poisson-Darboux equation. We have shown that this
method allows us to obtain an explicit solution in the form of a series in spherical functions.
The obtained solution possesses several important properties:

• Explicitness: the solution is expressed in terms of integrals over spherical functions, which allows for
numerical evaluation of its value.
• Stability: the solution is stable with respect to small perturbations of the initial data.
• Generality: the method is applicable to a wide class of problems with different boundary conditions and
nonlinear terms.
Our results open new possibilities for the study and solution of partial differential equations arising in
various fields of physics, mechanics, and mathematics.
In future research, we plan to:
• Investigate the convergence properties of the obtained series.
• Develop efficient numerical algorithms for the implementation of the method of spherical means.
• Apply the method to solving real-world problems in various fields of science and technology.
We are confident that the obtained results will make a significant contribution to the development of the
theory of partial differential equations and will have practical applications in various fields of science and
technology.
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