

AMERICAN ACADEMIC PUBLISHER

https://www.academicpublishers.org/journals/index.php/ijbms 9

INTERNATIONAL JOURNAL OF BUSINESS AND MANAGEMENT SCIENCES (ISSN: 2693-3500)

Volume 05, Issue 05, 2025, pages 09-26
Published Date: - 21-05-2025
Doi: -https://doi.org/10.55640/ijbms-05-05-02

Transforming Loan and Distribution Processing in Retirement
Systems: A QA Automation Approach

Sanjay Kumar Das
Independent Researcher

ABSTRACT

Providers of retirement plans are facing increasing pressure to modernize loan and distribution processing in

401(k) and other retirement systems to improve efficiency, accuracy, and compliance. Legacy processing

environments often mean manual processes and fragmented legacy systems, which mean long turnaround times

and a high error rate. This paper proposes a Quality Assurance (QA) automation approach to update these critical

processes. We design and implement an automated test and processing framework that leverages behavior-driven

development and state-of-the-art test automation tools to enable straight-through processing and comprehensive

verification of loan and distribution transactions. The method was applied to real retirement system environments

with much shorter processing cycles and quasi-elimination of processing errors. Results demonstrate that

automation-driven modernization can provide 50% faster processing, improved compliance with regulatory

requirements, and improved participant satisfaction. The findings of the research have significant implications for

the modernization of financial technology, illustrating how QA automation can bridge the gap between legacy

retirement platforms and the demands of contemporary financial services, while ensuring robust compliance and

reliability.

KEYWORDS

Retirement Plan Loan Processing, CARES Act Distribution Adaptation, Financial Services Automation, Risk
Management in Retirement Systems, OmniScript Integration, Mainframe Testing, Legacy System Modernization,
Straight-Through Processing

INTRODUCTION

Retirement plan systems in the United States manage enormous volumes of transactions and assets. As of 2022,

401(k) plans held over $7 trillion in assets for roughly 70 million active participants [1]. Among the transactions

supported by these systems, participant loans and distributions are particularly important and frequent. Most

401(k) plans allow participants to take loans from their retirement accounts – at year-end 2022 about 84% of

participants were in plans offering loans – yet roughly 15% of eligible participants had a loan outstanding [1] at any

time, translating to millions of loan origination and repayment events annually. Similarly, distribution processing

(e.g., withdrawals, rollovers, and retirement payouts) affects virtually every plan participant over the plan lifecycle.

Ensuring these transactions are processed efficiently and correctly is mission-critical, given the fiduciary stakes and

regulatory oversight in retirement systems.

https://doi.org/10.55640/ijbms-05-05-02

AMERICAN ACADEMIC PUBLISHER

https://www.academicpublishers.org/journals/index.php/ijbms 10

Despite the criticality of these processes, many retirement plan administrators still rely on legacy IT systems and

manual procedures that struggle to meet modern demands. Industry analyses have highlighted that plan loan

processing errors are a common occurrence – participant loan issues rank as the #9 operational failure in the IRS

401(k) compliance “Fix-it” guidelines [2]. Such errors can lead to loan limit violations or missed repayments,

triggering tax penalties and requiring complex corrections. More broadly, outdated recordkeeping technology and

fragmented processes impede efficiency. A McKinsey study of retirement recordkeepers noted that achieving scale

is difficult with aging systems “with extensive deferred maintenance and a prevalence of manually intensive

processes,” and that evolving client expectations are driving investment in digital capabilities to modernize these

systems [4]. In the wake of events like the COVID-19 pandemic, it became evident that legacy platforms could not

adapt quickly to sudden rule changes (e.g., special CARES Act withdrawal provisions), as “laws can change

unexpectedly” and firms might “not get months to implement these changes” [3]. These factors have created an

urgent impetus to modernize loan and distribution processing in retirement systems.

This paper addresses the modernization challenge by focusing on quality assurance automation as a catalyst for

process improvement. Rather than attempting a risky “big bang” replacement of legacy systems, we advocate an

incremental approach that uses automated testing and process validation to overlay and improve existing systems.

By employing QA automation tools and frameworks, organizations can rapidly introduce enhancements (such as

rule changes, new web interfaces, or batch process optimizations) with a safety net of automated regression tests

ensuring that critical loan and distribution functionalities remain correct. The approach combines behavior-driven

development (BDD) techniques with robust test automation to achieve what the industry envisions as straight-

through processing – i.e., end-to-end automation from request initiation to completion with minimal manual

intervention [3]. Early indications show that such an approach can dramatically reduce processing times and errors:

for example, intelligent automation has been shown to accelerate loan processing cycles by 50% while reducing

operational costs [7].

In the following sections, we provide a detailed overview of the legacy challenges impeding efficient loan and

distribution handling, and then present the tools and framework of our QA automation approach. We describe the

methodology used to implement and integrate the automation framework within existing retirement plan systems.

Two case studies are discussed, demonstrating the application of the approach to a 401(k) loan processing

modernization and to a rapid distribution process update in response to regulatory change. We then present

results and discussion, highlighting performance improvements and comparing our findings with industry

benchmarks. Finally, we conclude with broader implications, including how QA automation can inform future

retirement system modernization efforts and the potential policy and industry impacts of more automated, reliable

retirement operations.

2. METHODOLOGY

Our modernization methodology centers on introducing a QA automation framework into the retirement plan’s

loan and distribution processing pipeline. The goal is to systematically identify, automate, and validate all critical

business rules and workflows associated with these processes. Figure 1 outlines the key phases of our approach,

which are further detailed below:

2.1 Process Analysis and Requirements Capture: We began by documenting the legacy loan and distribution

processes, including all business rules (e.g., IRS limits such as IRC §72(p) loan limits, age-based withdrawal rules)

and pain points (error-prone steps, bottlenecks). This involved collaboration with business analysts and operations

AMERICAN ACADEMIC PUBLISHER

https://www.academicpublishers.org/journals/index.php/ijbms 11

staff to ensure the automation would cover real-world scenarios. We identified typical use cases (e.g., initiating a

new loan, processing a loan payoff, taking a partial distribution) as well as edge cases (violation of loan maximums,

multiple loans, hardship withdrawals with special tax withholding) to shape our test scenarios.

2.2 Behavior-Driven Test Design: Using the insights from Phase 1, we adopted a Behavior-Driven Development

(BDD) approach to design test scenarios. BDD allowed us to write scenarios in plain language (“Given-When-Then”

format) that describe the expected behavior of the system under various conditions [8]. For example, a loan

scenario was written as: “Given a participant with sufficient balance, when they request a loan of X with Y terms,

then the system approves and sets up repayments correctly.” These scenarios, written in a domain-specific language,

serve as both specifications and automated test cases. The BDD approach enhances collaboration – stakeholders

from IT, QA, and business could all review the scenarios for completeness and accuracy, ensuring the tests reflect

business expectations. Each scenario was mapped to test scripts (step definitions) in the automation framework.

2.3 QA Automation Framework Implementation: We implemented the tests using a combination of open-source

automation tools and custom scripting. In particular, we leveraged Selenium WebDriver to automate browser-

based interactions with the retirement system’s user interface, mimicking the actions of a user or administrator

processing loans/distributions. This allowed us to verify that the front-end and back-end were working together as

expected for each scenario (for instance, submitting a loan request through the web portal and checking the

resulting database entries or confirmations). To structure the automation code, we employed the Page Object

Model (POM) design pattern, which is a widely used approach in test automation to enhance maintainability and

reduce code duplication [9]. Each page or screen (e.g., loan request form, approval screen, distribution calculation

page) is represented as an object with methods to interact with it, making the test scripts more readable and easier

to update if the UI changes. Our framework was built primarily in Java with JUnit for organizing test cases, and

integrated with Cucumber for tying the BDD scenarios to the Selenium-based steps. We also included modules for

API-level testing (invoking backend services for loan interest calculation and tax computation) to verify logic that

might not be visible through the UI.

2.4 Tool Integration and Data Management: A critical aspect of the methodology was integrating supporting tools

for a complete QA ecosystem. We set up a Continuous Integration (CI) pipeline using Jenkins to automatically run

the full suite of automated tests on a scheduled basis (nightly) and on-demand (e.g., triggered by code changes or

configuration updates). This ensured that any new software release or configuration change in the retirement

system would be validated against the full array of loan and distribution scenarios immediately. We also addressed

test data management – creating and managing participant accounts and plan configurations needed for

repeatable test execution. In financial systems, realistic test data is essential; however, using production data can

raise privacy and compliance concerns. We employed data masking and synthetic data generation techniques so

that our tests could run on anonymized yet realistic datasets (aligning with financial industry practices to protect

customer data [6]). For example, participant personal details were scrambled, but their account balances and loan

histories were representative. We found that careful test data design was necessary to avoid the “test environment”

being a limiting factor; according to industry reports, roughly 46% of financial firms struggle with test data

management in compliance with regulations [6], so our framework treated this as a first-class concern.

2.5 Pilot Deployment and Iteration: We initially piloted the QA automation approach in a controlled test

environment that mirrored the legacy system. The pilot involved running the automated suite in parallel with

traditional processing for a subset of transactions. This allowed us to validate the accuracy of the automation

(ensuring no false positives/negatives in test results) and to fine-tune performance. We iteratively improved the

AMERICAN ACADEMIC PUBLISHER

https://www.academicpublishers.org/journals/index.php/ijbms 12

test scripts for stability – for instance, adding synchronization waits for background jobs and enhancing our

verification logic to account for acceptable variances (such as minor rounding differences in interest calculations).

Once the automated tests consistently passed and demonstrated alignment with expected outcomes, we

progressively expanded the coverage to all loan and distribution transactions and integrated the automation into

the main software development lifecycle.

Throughout the methodology, formal QA principles guided our decisions. By using BDD and page object patterns,

we ensured the solution remained extensible and maintainable even as underlying systems evolved. The choice of

widely adopted tools like Selenium was motivated by the need for reliability and community-proven support

(Selenium can replicate complex user interactions in the browser, which was essential for our web-based

interfaces). Moreover, aligning the test design with business language via BDD meant that the test cases served as

up-to-date documentation of the retirement system’s intended behavior, reducing the communication gap

between pension administrators and IT teams.

3. LEGACY CHALLENGES

Modernizing loan and distribution processing requires first understanding the legacy challenges that impede

efficiency and accuracy. In our study of the retirement system’s current state, we identified several key issues

common to legacy retirement recordkeeping platforms:

3.1 Rigid Legacy Systems: The core recordkeeping platforms for many retirement plans are built on decades-old

technologies (often mainframe-based) with tightly coupled business logic. Even a simple change – for example,

updating the maximum loan amount or altering a withdrawal rule – can require modifications deep in monolithic

code. These changes necessitate expertise in outdated programming languages and systems. As a result,

enhancements are slow and expensive to implement. Industry observers note that many providers operate with

“legacy mainframe systems in which business logic and code are tightly intertwined,” such that adjusting a rule (like

a penalty-free withdrawal limit) demands specialized mainframe developers and significant effort [3]. This technical

debt leads to what McKinsey described as “deferred maintenance” – necessary improvements deferred due to

system complexity – which accumulates over time [4].

3.2 Manual Workflow and Silos: A significant portion of loan and distribution processing is still manual or semi-

manual in legacy environments. For instance, participants may submit loan requests on paper or through basic web

forms that generate back-office tasks. Administrators then manually review requests, enter data into separate

systems (e.g., payroll and recordkeeping not fully integrated), and trigger payments or tax withholdings. These

multi-step manual processes introduce delays and opportunities for error. It’s not uncommon for a loan request to

take several business days to fulfill due to hand-offs and validations performed by staff. During peak periods or

special events, these teams can be overwhelmed – they are typically staffed for steady-state volumes, not surges.

One provider noted that manual processing can cause backlogs whenever request volumes spike (for example,

during economic downturns when more participants take loans or emergency withdrawals), and that legacy

systems offer little support for remote or automated work to handle the overflow [5]. In summary, the lack of end-

to-end automation (also called straight-through processing) in legacy setups means each transaction needs human

intervention at multiple points, slowing it down considerably.

3.3 Error Prone Operations: With manual steps and complex rules, errors in loan/distribution processing are a

persistent risk. Mistakes can range from simple data entry errors (typos in the loan amount or a distribution payee

address) to misapplication of rules (allowing a loan above the permitted limit, or failing to withhold taxes correctly

AMERICAN ACADEMIC PUBLISHER

https://www.academicpublishers.org/journals/index.php/ijbms 13

on a distribution). Such errors carry significant consequences in the retirement context. Loan processing errors, for

example, can lead to compliance violations under IRS regulations. If a participant loan exceeds the maximum

allowed or isn’t paid on schedule, it might be deemed a distribution, triggering taxes and penalties for the

participant. The IRS has documented that plan loan errors are a common issue requiring correction programs [2].

Even when not rising to the level of reportable violations, operational errors cause rework and participant

frustration. Missing a loan payment due to an administrative oversight requires issuing arrears notices and

scrambling to collect payments to avoid default. Similarly, mistakes in distribution processing (e.g. calculating the

wrong withholding or failing to distribute by a required deadline) can violate regulations and necessitate costly

fixes. In one industry whitepaper, it was noted that well-designed automation “can eliminate overpayments or

missed payments resulting in retroactive corrections and associated fines,” highlighting how prevalent those errors

are when processes rely on manual administration [2, 3].

3.4 Scalability and Cost Concerns: Legacy processes do not scale well to growing plan sizes and transaction volumes.

The defined contribution market has been growing (assets and participant counts rising annually), and providers

must service more transactions with the same or smaller staff. However, manually intensive processes scale linearly

with headcount – a model that is both costly and impractical. Margins in recordkeeping business are thin, pushing

providers to do more with less [4]. Without automation, adding more plans or participants means nearly

proportional increases in operational workload. This lack of scalability also shows up in the IT maintenance costs:

supporting old software consumes a large share of IT budgets, leaving few resources for innovation. For example,

in the financial services sector, firms historically have spent an estimated 30–40% of IT budgets on testing and QA,

much of it on labor-intensive manual testing [6]. This reflects how keeping legacy systems running (and bug-free)

can drain resources. Moreover, multiple siloed systems (one for loans, one for distributions, separate payroll, etc.)

mean duplicate data entry and reconciliation efforts, further driving up costs. These challenges underscore that

without modernization, retirement providers face escalating costs and complexity to meet participant needs.

3.5 Suboptimal Participant Experience: Today’s plan participants (and sponsors) expect digital convenience on par

with consumer finance platforms. Legacy loan and distribution processes often fall short: participants might have

to fill out physical forms or endure long wait times for approval and funding. There may be no self-service portal to

model different loan scenarios or initiate a distribution with real-time guidance. Communications about status are

slower and less transparent. All of this contributes to a poor user experience and potential dissatisfaction. In

contrast, a modern approach would allow participants to initiate transactions online with instant validations (e.g.,

the system immediately flags if a requested loan amount is above the allowable limit), electronic signatures, and

timely updates. The gap between these expectations and reality is a strong motivator for providers to modernize.

By addressing the above legacy challenges, plan administrators aim to provide self-service and near-instant

processing for routine transactions, which has become the norm in other areas of financial services.

These legacy challenges provided clear targets for our QA automation initiative. The next sections describe how the

chosen tools and framework directly tackle these pain points – automating repetitive tasks to eliminate manual

errors, encoding complex rules to ensure compliance, and enabling faster end-to-end processing. By doing so, the

framework brings the organization closer to a modern, resilient loan and distribution processing capability.

4. TOOLS

Successfully implementing QA automation for retirement systems requires a carefully chosen toolset that addresses
web automation, test case management, data handling, and continuous integration. In this project we integrated
several tools and frameworks, each serving a specific role in the overall solution:

AMERICAN ACADEMIC PUBLISHER

https://www.academicpublishers.org/journals/index.php/ijbms 14

4.1. PCOMM and Omni Suite Integration: IBM Personal Communications (PCOMM) is a key enabler in automating

mainframe-based interfaces by providing a programmable 3270 terminal emulation layer. In our QA automation

approach, PCOMM interacts with the OmniPlus recordkeeping system—developed by FIS—which handles core

participant record administration, including loans and distributions. PCOMM’s EHLLAPI interface allows test

automation frameworks to simulate real-time data entry, navigation, and validation over green screen sessions,

which are native to Omni’s user interface. The Omni Suite, composed of OmniPlus and supporting tools like

OmniScript, executes the business logic and batch processing associated with retirement transactions. Test

automation integrates with these systems by using PCOMM to drive front-end interactions (e.g., initiating loans)

and OmniScript to simulate backend scenarios and validate business rules. Batch operations triggered via JCL enable

validation of scheduled tasks, such as loan amortization or distribution withholding, ensuring that all aspects of

Omni’s processing can be verified end-to-end. This tight integration enables comprehensive regression testing,

particularly important in a retirement industry context where rule complexity is high and transaction accuracy is

critical.

4.2 Selenium WebDriver: We used Selenium WebDriver as the core engine for automating web interface

interactions. Selenium is an open-source framework that automates web browsers by simulating real user actions

(clicking links, entering text, submitting forms, etc.). This choice was natural given that the retirement system

provided a web-based interface for loan requests and distributions. By scripting Selenium to perform the same

steps an administrator or participant would, we could verify UI functionality and the correctness of workflows

without human effort. Selenium’s compatibility with multiple browsers ensured our tests covered different client

environments. In addition, the rich Selenium ecosystem allowed integration with our BDD layer and the use of

design patterns like Page Object Model for better code organization.

4.3 Cucumber (BDD Framework): For bridging the gap between business requirements and automated tests, we

employed Cucumber, a popular BDD framework. Cucumber allows writing test scenarios in plain English using a

syntax like “Given-When-Then”. These feature files act as executable specifications. We chose Cucumber because

it enables collaboration with non-developers – plan administrators and business analysts could read and even

author scenario descriptions, increasing confidence that the tests cover the intended behavior. Under the hood,

Cucumber binds these scenarios to our Selenium step definitions (written in Java). This means when a scenario says

“Given a participant has a plan loan available,” the automation knows to call the setup routine creating a dummy

participant in the database who meets that condition. The use of BDD with Cucumber thus made our QA process

more inclusive and transparent, qualities that are highly valued in an industry where compliance and cross-

functional sign-off are important [8].

4.4 JUnit and TestNG (Test Harness): We leveraged traditional testing frameworks (in our case JUnit, with some

TestNG concepts) to structure and execute the automated tests. JUnit provided annotations for setup/teardown

and grouping tests, which we used to ensure that each test case (each loan or distribution scenario) started with a

known state and cleaned up after execution. The test harness also handled assertions – verifying that actual

outcomes match expected outcomes – and reporting. For example, after Selenium simulated a loan issuance, JUnit

assertions would check that the account balance was reduced appropriately, the amortization schedule was

created, and no rule violations were logged. The choice of JUnit was mainly because of its maturity and seamless

integration with build tools and CI servers. It also allowed us to easily tag tests (e.g., smoke test vs. full regression)

and manage dependencies between tests if any.

AMERICAN ACADEMIC PUBLISHER

https://www.academicpublishers.org/journals/index.php/ijbms 15

4.5 Page Object Model (Design Pattern): Though not a tool per se, the Page Object Model (POM) guided how we

implemented our Selenium interactions. In POM, each page or component of the web application is represented

by a class, encapsulating the locators and operations for that page. We created page object classes for all major

screens – LoginPage, LoanRequestPage, ApprovalDashboard, DistributionForm, etc. This encapsulation improved

maintenance: if a web page’s layout changed, we only needed to update the page class, not every test script. The

POM approach is recommended in test automation as it enhances test maintainability and reduces code

duplication [12]. We found POM especially useful given the number of fields and steps in a typical loan or

distribution form – by reusing page methods (e.g., submitLoanRequest(amount, term)), test scenarios stayed high-

level and readable.

4.6 Jenkins (Continuous Integration Server): Jenkins was our choice for orchestrating test execution continuously.

We configured Jenkins jobs to run the full suite of automated tests on a nightly schedule and also trigger on any

code check-ins to the retirement system’s code repository. This CI setup provided rapid feedback; if a developer

introduced a change that inadvertently broke a loan calculation or a distribution workflow, the automated tests

would catch it within hours and Jenkins would flag the build as failed. The Jenkins dashboard then provided test

reports (via JUnit XML and Cucumber reports) that developers, QA, and management could review. Continuous

integration of tests is a cornerstone of modern QA, ensuring that quality is built into the development process

rather than treated as an afterthought. By integrating with Jenkins, we also laid the groundwork for continuous

delivery – the idea that eventually, software updates to the retirement platform could be deployed with confidence

because the automated tests assure quality at each step.

4.7 Test Data and Database Tools: We utilized a combination of database automation scripts and in-memory data

tools to handle test data. For setting up scenarios, direct database seeding was sometimes used (for instance, to

create a participant with a specific account balance and loan history, we ran SQL scripts before the test scenario

executed). We automated these using Flyway (for managing DB migrations in tests) and custom SQL runners.

Additionally, to verify back-end results, we tapped into the database after test actions; for example, checking that

a new loan record was inserted with the correct attributes after a test scenario ran. On data masking, we integrated

a simple tool to replace sensitive info (names, SSNs) with dummy values in test outputs and logs, aligning with best

practices for data security in QA. While these tools are lower-level, they were crucial in ensuring our tests were

repeatable and did not depend on fragile data conditions.

4.8 Reporting and Logging Tools: We instrumented the framework with reporting libraries (ExtentReports for HTML

reports of test execution, and log4j for detailed logging). This gave us human-friendly test reports that could be

shared with stakeholders. For instance, a test report would show a scenario narrative (from BDD), each step

executed (with screenshots captured at key points via Selenium), and the pass/fail result with details. If a test failed,

logs and screenshots were attached indicating where the discrepancy occurred (e.g., “Expected error message for

exceeding loan limit not displayed”). These reporting capabilities greatly sped up debugging and also served as

evidence of due diligence for compliance auditors – we could demonstrate that every business rule (loan limits,

withdrawal taxes, etc.) was being automatically tested and verified on every release.

By combining these tools and frameworks, we constructed a comprehensive QA automation environment tailored

to the needs of retirement plan processing. Importantly, all the tools chosen are either open-source or widely

supported, which kept costs manageable and ensured longevity (e.g., community support for Selenium, frequent

updates to Jenkins, etc.). The next section will describe how these tools come together in our framework

architecture, enabling end-to-end automation of the legacy processes.

AMERICAN ACADEMIC PUBLISHER

https://www.academicpublishers.org/journals/index.php/ijbms 16

5. Framework Overview

The QA automation framework we developed operates as an end-to-end test harness and process orchestrator for

loan and distribution transactions. It interfaces with the retirement system at multiple levels – web UI, database,

and API – to validate every step of the process. Figure 2 conceptually illustrates the architecture of the framework,

which can be described in three layers: (1) Test Specification Layer (BDD scenarios), (2) Automation Execution Layer

(Selenium-driven test engine with page objects), and (3) Outcome Validation Layer (assertions, reports, and

integrations).

5.1 Test Specification Layer: At the top, business-readable specifications drive the testing. Using Cucumber, we

wrote feature files that contain dozens of scenarios covering various aspects of loan and distribution processing.

For example, a feature file for loans includes scenarios for normal loan issuance, loan denial when requests exceed

balances, calculation of loan amortization schedules, handling of multiple concurrent loans if allowed by the plan,

and scenarios for loan defaults (missed payments). Each scenario is essentially a sequence of steps describing an

event (e.g., a participant requests a loan) and the expected system responses. These feature files are stored in

version control alongside the application code, ensuring they version-match the system. They serve as the “single

source of truth” for expected behavior. One powerful aspect of this approach is reusability of steps: steps like “Given

the participant has no existing loans” or “Then the system displays an error message” can be used in multiple

scenarios. This layer abstracts away the technical details – it reads almost like a policy manual for loans and

distributions but is actually tied directly into the automation.

5.2 Automation Execution Layer: This is the core of the framework where the test specifications are turned into

actions. The Cucumber runner, integrated with JUnit, reads each scenario and triggers the corresponding step

definitions implemented in Java. These step definitions employ the Selenium WebDriver and supporting code (page

objects, utilities) to carry out interactions. For instance, consider a step: “When the participant submits a loan

request for $5,000 with a term of 2 years”. The bound step definition would locate the Loan Request page object,

call a method to fill in the amount (5000) and term (24 months), and then call the submit action. Behind the scenes,

Selenium drives the browser to perform these actions on the web application. After submission, the next step might

be “Then the loan request is approved”, for which the automation might either check the UI for an approval

confirmation message and/or query the database to ensure a new loan entry is present with status “Approved”.

This layer thus executes both UI-level actions and backend verifications. We included many assert checks in the

step implementations to verify not just that a transaction went through, but that all calculated fields were correct

(for example, after a loan is approved, the monthly payment computed by the system is compared against an

independent calculation we perform in the test to verify the formula). The framework also handles cross-cutting

concerns here: synchronization (waiting for pages to load or background jobs to complete), error handling (if an

unexpected popup appears, capture it and log a warning), and test data setup/cleanup (using API or DB calls to

create prerequisite data or reset states). The use of page objects ensured that if, say, the position of the “Submit”

button on the form changed, we updated it in one place in the LoanRequestPage class, and all scenarios would then

work without modification.

5.3 Outcome Validation Layer: After and during test execution, the framework collects results and validates

outcomes against expected results. Each scenario yields a pass/fail status depending on whether all assertions in its

steps succeeded. We paid special attention to validating business rules: for loans, we encoded expected behaviors

such as “no more than 50% of vested balance can be borrowed”. During test execution, if a scenario intentionally

tries to borrow 60% of balance, the framework expects a specific error message from the system; if the message or

AMERICAN ACADEMIC PUBLISHER

https://www.academicpublishers.org/journals/index.php/ijbms 17

behavior deviates, the test fails, flagging a potential bug. In this sense, the framework acts as an automated QA

auditor, constantly checking the system’s outputs against the retirement plan’s documented rules. The validation

layer also ensures integration points are working – for example, if a distribution triggers an external tax calculation

service, the framework verifies that the correct tax code was applied by simulating the same calculation. All

comparisons and checks are logged. We integrated the reporting tool (ExtentReports) here so that at the end of a

test run, a comprehensive report is generated. This includes a high-level summary (e.g., 50 scenarios executed, 49

passed, 1 failed) and detailed trace for each scenario. Failed scenarios are highlighted with details on where the

mismatch occurred. One advantage of having such a robust validation layer is that it not only finds outright errors,

but also subtle deviations. In one case study, our framework caught a scenario where the system allowed a loan

term of 61 months (exceeding the typical 60-month maximum) – the transaction went through in the UI, but our

validation flagged it as a defect because the expected behavior (enforcing 60-month limit) did not occur.

The framework was designed to be extensible to accommodate future needs. For example, we built hooks for API

integration testing: if in the future the retirement system exposes web services for loan initiation (bypassing the

UI), we can write API-level tests that use the same validation logic. We also structured the framework to support

multiple environments (development, QA, staging) by externalizing environment configurations. This way, the same

test suite can be pointed at a new version of the system or a different client’s instance simply by changing a

configuration file. The BDD test scenarios remain the same, which underscores a key benefit: as the system is

modernized (e.g., modules rewritten or moved to cloud), the test scenarios can remain consistent, providing a

regression safety net throughout the modernization journey. Essentially, the framework can accompany the system

through its evolution – it is not a one-off testing tool, but a continuously useful asset.

Moreover, our QA automation framework contributes to compliance and audit readiness. Every test run produces

artifacts (logs, reports, screenshots) that demonstrate what was tested and the outcomes. This is valuable for

internal audit or external regulators. For instance, if questioned whether the plan’s loan limits are properly enforced

by the system, we can produce evidence from our automated test runs showing that in 100% of test cases the

system behaved correctly (or identifying the specific edge case where it didn’t, which can then be fixed). By

automating these checks, we ensure they are performed regularly, not just as a one-time certification.

In summary, the framework provides a robust scaffolding around the legacy retirement system, allowing us to

rapidly test and validate loan and distribution processing. It effectively creates a modern “wrapper” of automated

QA around the older core system. This approach gave the organization confidence to make changes and upgrades

– knowing that the automated suite would catch any regression – which is a crucial enabler for modernization. The

next section will illustrate how this framework was applied in practice through two case studies, and the tangible

improvements observed.

6. CASE STUDIES

To evaluate the effectiveness of the QA automation approach, we applied the framework in two distinct real-world

scenarios. The first case study involves a major 401(k) loan processing modernization initiative at a large plan

administrator. The second focuses on a distribution process overhaul triggered by urgent regulatory changes. These

case studies demonstrate the versatility of the framework and its impact on both day-to-day operations and the

ability to respond to external events.

Case Study 1: Streamlining 401(k) Loan Processing – A Large Recordkeeper Modernizes a Cumbersome Loan

Workflow. A national retirement services provider administering 500,000+ participant accounts sought to improve

AMERICAN ACADEMIC PUBLISHER

https://www.academicpublishers.org/journals/index.php/ijbms 18

its loan processing, which was plagued by manual steps and frequent errors. Prior to modernization, a participant

loan request (initiated via an online form) would enter a queue for staff review, then require batch job updates in

the recordkeeping system, and finally a confirmation sent out days later. On average it took 3–5 business days to

complete a loan from request to disbursement, and about 8% of loan requests encountered some form of error

requiring re-work (incorrect interest rates, or missed initiation of payroll deduction). Using our QA automation

framework, the provider re-engineered this process for straight-through processing. The BDD-driven tests were

crucial during this re-engineering: as the IT team introduced a new automated loan module, the QA tests

continuously validated that each new build met all legacy requirements and did not introduce regressions. Over a

6-month period, we developed ~120 automated scenarios covering all business rules (loan eligibility, limits, interest

calculation, repayment scheduling, default handling). These tests ran nightly against the staging environment as

new features of the loan module were rolled out. The impact was dramatic – upon go-live of the modernized loan

system, the end-to-end processing time dropped to <1 day (with many loans approved and funded within an hour

of initiation), and the error rate fell to near zero (no compliance violations or miscalculations detected in the first

three months of operation) as shown in Figure 1 below. The automation framework didn’t just operate in testing;

it was repurposed in a monitoring role in production dry-runs, executing synthetic transactions to ensure the system

was working before real participant requests were allowed through. This gave stakeholders great confidence. The

results in this case study align with other industry experiences where intelligent automation cut loan processing

times by about half and improved cost efficiency [7]. Internally, the provider estimated a reduction of 30% in

operational workload related to loans – staff who previously spent time on routine loan tasks could be reassigned

to customer service and exception handling. The QA automation framework continues to serve in this organization

for continuous regression testing whenever loan policies are updated annually.

Figure 1. This line graph compares the loan workflow stages and the time taken before automation (in red) versus

after automation (in green), clearly showing significant time reductions across each step.

AMERICAN ACADEMIC PUBLISHER

https://www.academicpublishers.org/journals/index.php/ijbms 19

Case Study 2: Rapid Adaptation to Regulatory Change (Distribution Processing) – Enabling Agility During the CARES

Act Emergency. In 2020, the COVID-19 pandemic led to the U.S. CARES Act, which among many provisions, allowed

retirement plan participants to take penalty-free emergency withdrawals up to $100,000. A regional retirement

plan administrator needed to implement these distribution rule changes almost immediately, as participants began

requesting COVID-related distributions. Their legacy distribution processing was largely manual and rule-bound

(with IRS early withdrawal penalties hard-coded into the system). The challenge was not only to update the rules

but to do so quickly and confidently, given the limited time. Our QA automation framework became an essential

tool in this scenario. We rapidly developed new BDD scenarios to represent the CARES Act provisions (e.g., “Given

a participant affected by COVID-19 requests a $50,000 distribution, when it is processed, then no 10% early

withdrawal penalty is applied and special tax reporting codes are used”). These scenarios covered both the presence

and absence of the special conditions. The team then updated the system’s distribution logic accordingly. Thanks

to the automation, we were able to regression-test the entire distribution workflow (including the new cases) in a

matter of hours, something that would have taken weeks with manual testing as shown in figure 2 below. The

framework caught a few initial issues – for example, a scenario where the system still applied a penalty on a certain

distribution subtype – which were quickly fixed and re-tested. Within roughly two weeks, the administrator fully

implemented the CARES Act changes and was able to process the surge of distribution requests with confidence.

The QA framework continued to run daily tests on the new logic throughout the high-volume period of 2020,

effectively acting as an early warning system for any processing anomalies. As a result, the firm reported zero

compliance errors in handling CARES Act distributions. They were able to handle a 5x spike in distribution volume

at the peak of the pandemic response without needing to increase staff, owing to the high level of automation. This

agility showcased how modernization investments pay off when unpredictable changes occur. One industry

commentary had presciently noted that “not only can laws change unexpectedly, but [organizations] might not get

months to implement these changes either”[3]– our case study validated that with the right tools (like QA

automation), even large-scale changes could be absorbed rapidly. Beyond the CARES Act, this experience left the

organization in a stronger position: the automated tests for distributions were left in place and later used to

implement provisions of the SECURE Act and other regulatory updates with minimal fuss. figure 2. It visually maps

the rapid implementation of distribution processing changes in response to the CARES Act, showing each major

AMERICAN ACADEMIC PUBLISHER

https://www.academicpublishers.org/journals/index.php/ijbms 20

milestone and the number of days taken to achieve it — from the Act's announcement to production go-live and

daily monitoring.

Comparing the two case studies, we observe that the QA automation approach provided benefits in both a

proactive modernization project (Case 1) and a reactive urgent update (Case 2). In the loan processing overhaul,

automation was key to iterative development and ensuring quality during a major system enhancement. In the

distribution scenario, the framework delivered agility and ensured compliance under tight deadlines. In both cases,

the common outcome was a faster, more reliable process:

• In Case 1, participant loans became faster (hours instead of days) with virtually no errors, improving

customer satisfaction and trust.

• In Case 2, the firm demonstrated compliance and responsiveness in a crisis, avoiding penalties and

bolstering their reputation with plan sponsors and participants.

These case studies underscore that modernization is not just about new features, but about building confidence

and resilience into systems. By having a robust QA automation framework, organizations can undertake significant

changes with a safety net in place, which encourages innovation rather than fear of breaking things. Next, we

quantify the improvements and discuss broader implications drawn from these implementations.

7. Results and Discussion

The implementation of the QA automation framework yielded substantial improvements across multiple

dimensions. We summarize the key results observed in figure 3 below and provide a discussion in the context of

industry benchmarks and future considerations:

7.1 Processing Speed and Efficiency: Both case studies showed dramatic reductions in end-to-end processing times

for loans and distributions. Quantitatively, the automated loan processing pipeline in Case 1 achieved a ~60–70%

reduction in cycle time, cutting what was a multi-day process down to same-day (often same-hour) completion.

This aligns with external reports of automation in financial services yielding roughly 50% faster processing cycles

on average [7]. The distributions case saw similarly improved throughput despite volume spikes. Faster processing

not only means better service for participants (receiving their funds sooner) but also reduces work-in-progress

queues, making the operation more manageable. Our findings reinforce that removing manual touchpoints and

introducing straight-through workflows can halve or better the time required for routine transactions, consistent

with the promise of digital transformation in finance [3].

7.2 Accuracy and Error Reduction: A primary goal was to eliminate the kinds of errors that plagued the legacy

processes. The automated validation of business rules and calculations led to near zero processing errors in

production during our observation period. In Case 1, after go-live, no instances of loan limit violations or mis-

calculated schedules were reported, whereas previously such issues occurred frequently (dozens of errors annually

requiring correction). In Case 2, the success was measured by the absence of compliance flags or restatements

needed for the emergency distributions – a stark contrast to some peers who, lacking automation, had to later

correct mistakes in tax reporting. The framework essentially acted as a continuous guardrail, enforcing policies

exactly as written. This outcome matches the expectation that comprehensive automation “flags potential errors

and manages the process to ensure the most accurate data” is passed between systems. Our work corroborates

that notion: by encoding rules in tests, we caught potential errors before they affected real accounts. Industry data

AMERICAN ACADEMIC PUBLISHER

https://www.academicpublishers.org/journals/index.php/ijbms 21

suggests that automation can eliminate common mistakes such as overpayments or missed loan repayments [2],

and our results provide concrete evidence of this in a large-scale setting. An incidental benefit we noted is improved

data accuracy and consistency across systems (payroll, recordkeeping, etc.), since the automated process enforced

synchronization – e.g., every loan issuance test also checked that the payroll system was updated with the new

deduction, something that might be overlooked in manual operations.

7.3 Compliance and Risk Management: The automated QA approach significantly strengthened compliance

assurance. With regulations in retirement plans being strict (IRS rules, Department of Labor requirements, etc.),

having an automated suite that checks compliance in each test run greatly reduces the risk of violations. In

discussions with the plan provider’s compliance officers, they expressed increased confidence that the system

adheres to all plan provisions because those provisions are essentially tested daily. It is worth noting that regulators

are paying more attention to system robustness; the Department of Labor and other agencies have been

encouraging retirement plan providers to improve their technology to prevent errors and protect participants. Our

approach provides a concrete way to do that. In fact, we can envision regulators in the future asking for evidence

of such automated controls. In our case, the provider was able to demonstrate, for example, that 100% of loan

requests beyond allowable amounts are caught and prevented by the system (with test logs to prove it). This kind

of proof could be persuasive in an audit. From a risk management perspective, automation also reduces key-person

risk and process drift. Previously, so much know-how resided in individuals who manually processed edge cases;

now that knowledge is institutionalized in the automated tests and code. One point of discussion is that QA

automation doesn’t remove all risk – it is only as good as the scenarios anticipated. We mitigated this by extensive

scenario brainstorming (with business and compliance input), but unknown unknowns can still occur. That said, a

robust automated test bed allows for very quick testing of any new scenario that arises unexpectedly. We argue

that the presence of this framework fundamentally improves the organization’s operational risk posture.

7.4 Operational Cost Impact: By reducing manual work, the QA automation approach is associated with cost

savings, although exact amounts depend on each organization’s context. For our Case 1 provider, they estimated

an annual saving of several thousand person-hours in loan processing and exception handling. This translates to

either labor cost savings or the ability to repurpose staff to more value-added roles (e.g., personalized financial

guidance to participants rather than paperwork). Automation also cuts costs related to errors – every prevented

error avoids not just potential penalties but also the internal cost of correcting that error (which can be high, as it

may involve research, re-running calculations, communicating with affected participants, etc.). The UiPath industry

analysis reports up to 30% reduction in overhead costs with modern test automation and increased coverage [6].

Our experience suggests a comparable order of magnitude of savings when considering the full picture (labor,

rework, compliance costs). It’s important to note, however, that there is an upfront investment to build the

automation framework – our project took months of effort from a dedicated QA automation team. The return on

investment (ROI) became evident within the first year, and from that point on it’s largely net gain. We also foresee

future cost avoidance: as the system evolves, new features can be delivered faster because testing effort will not

scale linearly (the regression suite is already automated). This is a form of “speed to market” benefit that is hard to

quantify in dollars but is very tangible in competitive terms.

7.5 Test Coverage and Quality Assurance: One often overlooked result is the improvement in test coverage and

depth of quality assurance. Manual testing, due to time constraints, often samples a few scenarios and paths. In

contrast, our automation was thorough – we automated edge cases that manual testers rarely attempt, such as

simultaneous loans, back-to-back distributions, or unusual sequencing of actions. We achieved nearly 100%

coverage of documented business requirements for loans and distributions. Moreover, automated tests can be

AMERICAN ACADEMIC PUBLISHER

https://www.academicpublishers.org/journals/index.php/ijbms 22

run repeatedly with varied data, effectively covering far more combinations than a human could. This led to the

discovery of legacy bugs that were previously unknown. For instance, during the project we uncovered a defect in

the legacy system where if a participant changed their repayment frequency mid-loan, the system mishandled the

amortization – a subtle bug that had not been caught before. By catching and fixing such issues, the overall quality

of the system is improved beyond the scope of the modernization at hand. This demonstrates how an automation

initiative can drive up quality holistically. Our results resonate with the general trend that modern automated

testing can increase test coverage by 2–3× compared to manual methods [6]. Higher coverage means fewer

escaped defects, which again ties back to cost and risk improvements.

7.6 Developer and Team Productivity: An ancillary benefit observed was a change in team dynamics and

productivity. With the automated tests as a safety net, developers became more willing to refactor and improve

code in the retirement system. In the past, fear of breaking something (given the complexity of legacy code) made

developers hesitant to touch certain modules. The presence of a comprehensive test suite mitigated that fear, since

any unintended impact would be immediately flagged by a failing test. This led to a cleaner, more modular codebase

over time as technical debt was gradually refactored. It also shortened debugging cycles – when a test failed,

pinpointing the cause was faster thanks to detailed logs and the reproducibility of automated tests. From a process

standpoint, the collaboration between business analysts, developers, and QA improved due to BDD. The BDD

scenarios became a common reference point, and this shared understanding reduced miscommunication. These

qualitative improvements support the notion that investing in quality assurance (especially automation with BDD)

has multiplicative effects on the software development lifecycle, an insight echoed in agile development research.

Figure3: Summary of QA Automation Impact Across Key Result Areas – This bar chart highlights the effectiveness of

the QA automation approach across six dimensions: processing speed, error reduction, compliance assurance,

operational cost savings, test coverage, and team productivity. The results demonstrate substantial improvements,

reinforcing automation as a transformative driver in retirement system modernization.

Despite these positive outcomes, the discussion would be incomplete without addressing some challenges and

limitations encountered:

AMERICAN ACADEMIC PUBLISHER

https://www.academicpublishers.org/journals/index.php/ijbms 23

• Maintenance of the Automation Suite: As the system changes, the test suite must be maintained. While we

designed for maintainability (using POM, etc.), any change in requirements or UI does necessitate updating the

tests. This introduces ongoing overhead. We mitigated this by training the QA team and even some developers

to continuously maintain and extend the test suite as part of normal development work (shifting some QA left to

developers). In effect, the test code becomes part of the codebase to be cared for. Organizations must plan for

this and not treat automation as a one-time project. Encouragingly, maintenance effort has been manageable;

for example, a minor UI redesign post-modernization took two QA engineers about two days to adjust all relevant

tests. The key is that management must acknowledge automation scripts as assets that require upkeep – much

like one maintains documentation or infrastructure.

• Tool and Environment Issues: We faced occasional issues typical of test automation – e.g., Selenium tests failing

due to timing issues or environment instability rather than genuine defects (so-called false positives). Early in the

project, such hiccups caused some mistrust in the test results. We addressed this by improving synchronization

in the scripts and by implementing a strategy of re-running failed tests to see if issues persist, thereby filtering

out flaky tests. Over time the stability reached a very high level (tests either consistently pass or surface real

problems). Additionally, test environments need to be managed carefully; we had to ensure our test runs did not

conflict with other uses of the QA environment, especially when simulating large transaction volumes. For future

implementations, containerized test environments or service virtualization could further isolate and stabilize

automated testing.

• Scope Boundaries: Our framework was comprehensive for loans and distributions, but it did not automate every

aspect of the retirement platform (for instance, we did not initially automate investment trades or complex

actuarial calculations unrelated to loans/distributions). Thus, the modernization via QA automation tackled

specific pain points but wasn’t a total system rewrite. Some might argue this leaves other areas of the system still

needing modernization. However, our strategy was to focus on the most impactful areas first. In practice, the

success with loans and distributions has set the stage to expand automation to other processes (such as

enrollment processing, employer contribution processing, compliance tests like discrimination testing). This

phased approach is sensible in large systems – bite off the parts that yield high ROI and demonstrate success,

then iterate. In discussion with the provider’s leadership, they are now planning to leverage our framework to

cover additional modules, essentially scaling the modernization effort. This raises an important point: the QA

automation approach is incremental and can gradually lead to comprehensive modernization without the big risks

of a full system replacement project.

• Comparison to Alternative Approaches: It’s worth discussing why we chose QA automation as the lever for

modernization rather than, say, adopting a new off-the-shelf recordkeeping system or building RPA (Robotic

Process Automation) bots on top of the legacy system. Full system replacement was deemed too risky and

expensive (multi-year projects with uncertain outcomes, as many failed core system replacements in government

and finance have shown). RPA bots were considered – indeed RPA is often touted as a way to integrate legacy

systems by mimicking user actions like a human would. However, pure RPA can be brittle and was seen as a short-

term fix; RPA would automate the manual work but wouldn’t necessarily enforce rules unless programmed to,

and complex decision logic can become hard to maintain in RPA scripts. We opted for a more engineering-driven

automation (directly at the application logic level through tests) rather than an ops-driven RPA overlay. That said,

RPA could complement our approach for parts of the process that require interacting with external systems

lacking APIs. Our approach was also aligned with a broader DevOps culture shift – integrating QA into

development – whereas RPA is often outside of that cycle. In summary, the QA automation approach proved to

AMERICAN ACADEMIC PUBLISHER

https://www.academicpublishers.org/journals/index.php/ijbms 24

be a balanced strategy: it leveraged existing system investment, minimized disruption, and delivered quick wins,

all while building towards a more robust future state.

In light of these results, we observe a few trends and implications. First, the success of automation in a traditionally

conservative domain like retirement services suggests that even highly regulated, batch-oriented industries can

greatly benefit from modern QA and DevOps practices. The barrier to entry (learning test automation, changing

culture) is well worth the outcome. Second, our work highlights the importance of focusing on quality as a path to

modernization. Often, modernization is thought of purely in terms of new technology (e.g., moving to cloud,

adopting microservices). Our case illustrates that focusing on quality and testing can itself drive modernization – by

enabling those other tech changes safely. Essentially, QA automation became the enabler for broader innovation

here.

Finally, we note that as retirement systems modernize, participants and plan sponsors will experience tangible

benefits: faster loan turnarounds mean participants get needed funds in emergencies promptly (potentially

improving financial well-being), and error-free processing means fewer costly mistakes impacting retirement

savings. Providers that invest in such capabilities may also gain competitive advantage in the marketplace (sponsors

choosing recordkeepers who offer superior service). This creates a virtuous cycle encouraging further

modernization in the industry.

8. CONCLUSION

This paper presented a comprehensive, research-driven approach to modernizing legacy retirement plan operations

using QA automation. Focusing on the critical use cases of participant loan processing and distribution processing,

we demonstrated that a well-designed automated testing and process validation framework can serve as a powerful

catalyst for modernization. Our QA automation approach, grounded in behavior-driven development and powered

by tools like Selenium and Cucumber, enabled the transformation of sluggish, error-prone legacy workflows into

efficient, straight-through processing pipelines. The case studies of a 401(k) loan modernization and an emergency

distribution rule change illustrated how the framework not only improved day-to-day efficiency (with up to 70%

faster processing and near-zero errors) but also enhanced the organization’s agility in the face of change.

The key contributions of this work are twofold. First, we provided a framework and methodology that others in the

retirement and financial services industry can emulate – one that emphasizes incrementally overlaying automation

to achieve quick wins while laying the groundwork for deeper system upgrades. By integrating QA automation early

in the modernization process, we showed that organizations could de-risk the modernization effort and

continuously verify compliance with complex regulations. Second, we offered an analytical evaluation of the

outcomes, using both quantitative results and qualitative insights, bridging the gap between theoretical benefits of

test automation and actual realized benefits in a production environment. We integrated academic rigor by

referencing industry data and best practices, thereby positioning our approach in the context of broader fintech

and software engineering trends.

The implications of these findings are significant. For industry practitioners, this approach provides a roadmap to

enhance legacy systems without the “freeze and replace” method that often fails. It suggests that modernization

budgets and efforts should allocate resources to building robust automated QA suites as an integral part of system

renewal. For policymakers and regulators, our work highlights that encouraging or even mandating higher standards

of automation and testing in recordkeeping operations could greatly reduce operational failures that ultimately

affect retirees. Regulators might consider frameworks for certifying automated controls in retirement systems,

AMERICAN ACADEMIC PUBLISHER

https://www.academicpublishers.org/journals/index.php/ijbms 25

analogous to how financial controls are audited – the evidence from our study indicates that such automation leads

to more compliant outcomes with potentially fewer errors that harm participants [2].

In terms of future research and development, there are several avenues to explore building on this foundation.

One area is the incorporation of AI and machine learning into the QA automation framework. For instance, machine

learning could analyze historical transaction data and user behavior to suggest additional test scenarios (edge cases

that humans might not think of) or to predict which parts of the system are most likely to fail after a given change.

Another prospective advancement is using model-based testing techniques to automatically generate test cases

from formal specifications of retirement plan rules – this could further increase coverage and reduce manual effort

in writing tests. Early research indicates that model-based approaches could ensure a “seamless change to the

modernized system” by systematically covering all states and transitions [10]. Combining model-driven methods

with our behavior-driven framework would be an interesting hybrid approach to guarantee robustness.

Additionally, extending the automation framework to encompass performance testing and scalability will be crucial

as transaction volumes grow. In our project, we primarily focused on functional correctness, but for a complete

modernization, one must also validate that the system can handle peak loads (for example, a surge of loan requests

during an economic crisis). Automating performance tests and integrating them into CI (e.g., using tools like JMeter

or Gatling alongside Selenium) would help ensure that modernization does not introduce bottlenecks.

From a policy perspective, as the industry modernizes, standardization of processes and data formats (perhaps

through regulatory guidance) could further facilitate automation. If all plan providers followed certain data

standards for loans and distributions, QA frameworks could be more easily shared or benchmarked across the

industry. Our results showing reliability and compliance improvements could inform such standard-setting.

Policymakers interested in the resilience of the retirement system might view automation not just as an operational

improvement, but as a way to safeguard participants’ assets – for example, by reducing the incidence of loan

defaults caused by administrative error, thereby preserving retirement savings.

In conclusion, modernizing retirement systems is a multi-faceted challenge, but this study demonstrates that QA

automation is a practical and effective strategy to drive modernization while controlling risk. We modernized

critical facets of loan and distribution processing without a risky system replacement and achieved outcomes on

par with or exceeding expectations from a full modernization. The language of quality assurance and automation

can be a unifying force between business stakeholders, IT professionals, and regulators – all can agree on the end

goals of accuracy, efficiency, and reliability. By making the legacy new again through the lens of QA automation,

retirement service providers can better meet the needs of today’s workforce and retirees, ensuring that the promise

of technology – faster service, fewer errors, greater transparency – is delivered in an arena that directly impacts

the financial well-being of millions. The techniques and lessons detailed here are broadly applicable to any domain

where legacy processes and rules-heavy workflows prevail, offering a template for others to follow in the ongoing

journey of digital transformation.

REFERENCES

1. S. Holden, S. Bass, and C. Copeland, “401(k) Plan Asset Allocation, Account Balances, and Loan Activity in

2022,” ICI Research Perspective, vol. 30, no. 3, Apr. 2024. ici.org

2. B. Cross, “Lamenting over loans: Operational failures related to participant plan loans,” Milliman Insight, Jan.

19, 2023. milliman.com

https://www.ici.org/system/files/2024-04/per30-03.pdf
https://www.milliman.com/en/insight/lamenting-over-loans-operational-failures-related-to-participant-plan-loans

AMERICAN ACADEMIC PUBLISHER

https://www.academicpublishers.org/journals/index.php/ijbms 26

3. Congruent Solutions, “Processing 401k Withdrawals: Is your retirement plan technology agile?,” Congruent

Blog, 2022. congruentsolutions.com

4. McKinsey & Company, “Long-term value creation in US retirement,” McKinsey Report, 2019. mckinsey.com

5. Congruent Solutions, “The CORE Platform – Loans & Distributions Module,” Product Information Page, 2022.

congruentsolutions.com

6. S. Gustafson, “Why financial services firms are rewriting their testing strategies,” UiPath Blog, Aug. 2024.

uipath.com

7. Sutherland Global, “Transforming Loan Processing for a leading US financial institution with intelligent

automation,” Case Study, Dec. 2024. sutherlandglobal.com

8. H. Akhtar, “What is BDD? (Behavior-Driven Development),” BrowserStack Guide, Dec. 17, 2024.

browserstack.com

9. Selenium Project, “Page Object Models – Selenium Documentation,” Selenium.dev, 2023. selenium.dev

10. T. Ritter et al., “Model-based testing in legacy software modernization,” in Proc. JAMAICA 2013 Workshop,

2013. conference-publishing.com

https://www.congruentsolutions.com/blogposts/processing-401k-withdrawals-is-your-retirement-plan-technology-agile/
https://www.mckinsey.com/industries/financial-services/our-insights/long-term-value-creation-in-us-retirement
https://www.congruentsolutions.com/the-core-platform/
https://www.uipath.com/blog/industry-solutions/financial-services-firms-rewriting-testing-strategies
https://www.sutherlandglobal.com/insights/case-study/transforming-loan-processing-for-a-leading-us-financial-institution
https://www.browserstack.com/guide/what-is-bdd
https://www.selenium.dev/documentation/test_practices/encouraged/page_object_models/
https://www.conference-publishing.com/toc/ISSTAWS13JAMAICA/abs

