

Research Article

Reconceptualizing Health Care and Organizational Systems through Complexity Science: Theoretical Foundations, Adaptive Dynamics, and Practical Implications

Dr. Elias Moreno ¹

¹Department of Systems and Health Sciences, Autonomous University of Barcelona, Spain

Abstract

Received: 12 November 2025

Revised: 2 December 2025

Accepted: 20 December 2025

Published: 01 January 2026

Copyright: © 2026 Authors retain the copyright of their manuscripts, and all Open Access articles are disseminated under the terms of the Creative Commons Attribution License 4.0 (CC-BY), which licenses unrestricted use, distribution, and reproduction in any medium, provided that the original work is appropriately cited.

Complexity science has emerged as a powerful interdisciplinary framework for understanding systems characterized by nonlinearity, emergence, adaptation, and uncertainty. Health care organizations, governance structures, and social systems increasingly exhibit these properties, challenging traditional linear, reductionist models of design, management, and evaluation. This article offers an extensive theoretical and conceptual exploration of complexity science as applied to health care and organizational systems, drawing strictly from established foundational and applied literature. By synthesizing perspectives from complex adaptive systems theory, systems thinking, network science, and organizational studies, the paper examines how interactions among heterogeneous agents generate emergent patterns that cannot be fully predicted or controlled. The analysis situates health care as a paradigmatic complex adaptive system, where outcomes arise from dynamic relationships among patients, professionals, technologies, policies, and sociocultural contexts. Methodologically, the article adopts an integrative, theory-driven narrative review approach grounded in systematic literature review principles to ensure conceptual rigor and coherence. The results are presented as a descriptive synthesis of recurring theoretical constructs, empirical insights, and practical implications across health care, primary care, palliative care, integrated care, and governance domains. The discussion critically interrogates the implications of complexity thinking for leadership, quality improvement, accountability, and policy design, while also addressing tensions between complexity-informed approaches and conventional managerial paradigms. Limitations related to operationalization, measurement, and translation into practice are examined in depth, alongside future research directions emphasizing agent-based modeling, reflective practice, and adaptive governance. The article concludes that embracing complexity science does not imply abandoning structure or standards, but rather reframing them as enabling constraints that support learning, resilience, and sustained improvement in complex systems.

Keywords: Complexity science, complex adaptive systems, health care systems, systems thinking, organizational theory, governance, emergence

INTRODUCTION

The increasing complexity of modern health care systems and organizational environments has exposed the limitations of traditional linear and mechanistic approaches to design, management, and evaluation. Health care delivery today involves multiple interacting actors, including patients, clinicians, administrators, policymakers, technologies, and communities, all embedded within evolving social, economic, and political contexts. These interactions produce outcomes that are often unpredictable, nonlinear, and resistant to centralized control. Complexity science has been proposed as

a conceptual lens capable of capturing these realities and offering alternative ways of understanding and intervening in such systems (Zimmerman et al., 1998; Plsek and Greenhalgh, 2001).

At its core, complexity science studies systems composed of many interacting elements whose collective behavior cannot be fully explained by analyzing individual components in isolation (Holland, 1992; Ladyman et al., 2013). Such systems, commonly referred to as complex adaptive systems, are characterized by features including self-organization, emergence, adaptation, feedback loops, and sensitivity to initial conditions. These properties stand in contrast to the assumptions of linear causality, predictability, and controllability that underpin much of classical management science and biomedical thinking (Simon, 1991; Cilliers, 2002).

Health care has increasingly been recognized as a quintessential complex adaptive system. Early work emphasized that clinical outcomes, organizational performance, and system-level behaviors emerge from interactions among diverse agents rather than from top-down directives alone (Rouse, 2008; Plsek and Greenhalgh, 2001). Subsequent research has extended this perspective to primary care, palliative care, integrated care, and health governance, highlighting the relevance of complexity science for understanding variation, innovation, and unintended consequences in real-world settings (Ellis, 2010; Hodiamont et al., 2019; Hughes et al., 2020).

Despite growing interest, the integration of complexity science into health care theory and practice remains uneven and contested. Critics argue that complexity concepts are often invoked metaphorically without sufficient rigor, while practitioners struggle to translate abstract ideas into actionable strategies (Kernick, 2002; Anderson, 1999). Moreover, tensions persist between complexity-informed approaches and established frameworks for quality assurance, accountability, and performance measurement, such as clinical governance models and excellence frameworks (Donabedian, 1988; EFQM, 1999).

The purpose of this article is to provide a comprehensive, theoretically grounded examination of complexity science as applied to health care and organizational systems. By synthesizing foundational theories, methodological approaches, and applied insights from the literature, the article aims to clarify key concepts, address common misunderstandings, and articulate practical implications for design, management, and policy. The analysis also identifies gaps in the existing literature and outlines directions for future research and practice. In doing so, the article contributes to ongoing debates about how best to navigate complexity in health care without sacrificing rigor, accountability, or equity.

METHODOLOGY

The methodological approach adopted in this article is a theory-driven, integrative narrative review informed by established guidelines for systematic literature reviews. While the primary objective is conceptual synthesis rather than quantitative aggregation, methodological rigor is ensured through transparent selection, interpretation, and integration of sources (Kitchenham and Charters, 2007). The reference corpus consists exclusively of the provided literature, encompassing foundational theoretical works, empirical studies, and applied analyses across complexity science, health care, organizational studies, and systems thinking.

The review process follows a structured logic rather than a procedural checklist. First, seminal theoretical contributions were examined to establish core definitions and ontological assumptions of complexity science, including works by Holland, Simon, Cilliers, and Ladyman and colleagues. These sources provide the philosophical and conceptual foundations necessary for consistent interpretation. Second, literature explicitly addressing health care and organizational systems was analyzed to identify how complexity concepts have been operationalized and debated in applied contexts (Plsek and Greenhalgh, 2001; Rouse, 2008; Ellis, 2010). Third, studies focusing on specific domains such as primary care, palliative care, integrated care, and governance were

reviewed to explore domain-specific manifestations of complexity and adaptive behavior (Hodiamont et al., 2019; Hughes et al., 2020).

Analytical synthesis was conducted through iterative reading, thematic clustering, and comparative interpretation. Rather than coding data in a formal qualitative sense, the analysis identifies recurring constructs such as emergence, self-organization, feedback, adaptation, and enabling constraints, and examines how these constructs are interpreted across disciplines. Attention is paid to points of convergence and divergence, as well as to implicit assumptions about causality, control, and agency.

Importantly, the methodology acknowledges the epistemological stance inherent in complexity science. Knowledge about complex systems is provisional, contextual, and relational, rather than universal and deterministic (Cilliers, 2002). Accordingly, the aim is not to produce definitive prescriptions, but to articulate plausible interpretations and guiding principles grounded in the literature. This approach aligns with hermeneutic perspectives on integrated care and organizational learning, which emphasize sense-making and reflexivity over prediction (Hughes et al., 2020).

RESULTS

The results of the integrative analysis are presented as a descriptive synthesis of key theoretical and applied insights emerging from the literature. Rather than empirical findings in a conventional sense, the results consist of conceptual patterns and explanatory frameworks that recur across studies and domains.

A central result is the consistent characterization of health care and organizational systems as complex adaptive systems. Across the literature, such systems are described as composed of multiple heterogeneous agents, including individuals, teams, technologies, and institutions, whose interactions give rise to emergent structures and behaviors (Holland, 1992; Chan, 2001). These agents operate according to local rules and constraints, yet collectively produce system-level patterns that cannot be fully anticipated from initial conditions alone.

Another prominent result concerns the role of nonlinearity and feedback. Health care processes rarely exhibit proportional cause-and-effect relationships. Small interventions can produce large effects, while substantial investments may yield minimal change due to compensatory behaviors or contextual constraints (Plsek and Greenhalgh, 2001; Kernick, 2002). Feedback loops, both reinforcing and balancing, shape system dynamics over time, influencing learning, adaptation, and path dependence.

Emergence emerges as a unifying concept across theoretical and applied studies. Clinical practices, organizational cultures, and care pathways are shown to arise from ongoing interactions rather than from centralized design (Ellis, 2010; Stroebel et al., 2005). This perspective challenges traditional notions of control and accountability, suggesting that leaders influence outcomes indirectly by shaping conditions rather than issuing directives.

The literature also highlights the importance of networks and relationships. Network thinking emphasizes patterns of connectivity, information flow, and influence among agents (Mitchell, 2006). In health care, professional networks, informal communication channels, and inter-organizational partnerships play critical roles in shaping innovation and resilience. Integrated care initiatives, for example, depend less on formal structures than on trust, shared meaning, and adaptive coordination (Hughes et al., 2020).

Finally, the analysis reveals persistent tensions between complexity-informed perspectives and established managerial frameworks. While quality models and governance structures emphasize standardization, measurement, and accountability, complexity science underscores variability, uncertainty, and local adaptation (Donabedian, 1988; EFQM, 1999). The literature does not resolve this tension but offers ways of reframing standards as flexible guides rather than rigid controls.

DISCUSSION

The synthesis of complexity science literature applied to health care and organizational

systems has profound implications for theory, practice, and policy. One of the most significant theoretical implications is the reframing of causality. Traditional models assume linear causation, where specific inputs reliably produce specific outputs. Complexity science, by contrast, emphasizes distributed causality, where outcomes emerge from interactions among multiple factors across levels (Ladyman et al., 2013). This shift challenges deeply ingrained assumptions in evidence-based medicine and management science, which often prioritize control and prediction.

From a practical standpoint, embracing complexity implies rethinking leadership and management. Leaders in complex adaptive systems cannot control outcomes directly, but they can influence system behavior by shaping enabling constraints, fostering relationships, and supporting learning (Plsek and Greenhalgh, 2001; Rouse, 2008). This perspective aligns with reflective practice models, where improvement emerges from ongoing sense-making rather than from compliance with predefined plans (Stroebel et al., 2005).

However, complexity-informed approaches are not without limitations. One major challenge lies in operationalization. Concepts such as emergence and self-organization are difficult to measure and incorporate into formal evaluation frameworks. There is a risk that complexity becomes a rhetorical device rather than a practical guide, leading to vagueness or managerial paralysis (Anderson, 1999). Critics argue that without clear methods, complexity thinking may undermine accountability and justify inaction.

Another limitation concerns equity and power. Complexity science often emphasizes decentralization and local adaptation, but health care systems are embedded in broader social structures characterized by inequality and asymmetrical power relations (Meek et al., 2007). Without explicit attention to these factors, complexity-informed interventions may inadvertently reinforce existing disparities.

Future research should address these challenges by developing methodological tools that bridge theory and practice. Agent-based modeling offers one promising avenue, allowing researchers to simulate interactions among agents and explore emergent outcomes under different conditions (Abbott and Hadžikadić, 2017; Reynolds, 1987). Qualitative approaches, including ethnography and narrative inquiry, are also essential for capturing lived experience and contextual nuance.

Policy implications are equally significant. Complexity science suggests that policy interventions should be adaptive, iterative, and responsive to feedback rather than fixed and prescriptive (Kernick, 2004). This requires a shift from performance targets toward learning-oriented governance models that value experimentation and reflection.

CONCLUSION

This article has provided an extensive, theoretically grounded examination of complexity science as applied to health care and organizational systems. Drawing strictly from established literature, it has demonstrated that complexity science offers a coherent framework for understanding systems characterized by nonlinearity, emergence, and adaptation. Health care, in particular, exemplifies the properties of a complex adaptive system, challenging traditional approaches to design, management, and evaluation.

Rather than offering simple solutions, complexity science invites a fundamental rethinking of how we conceptualize causality, control, and improvement. Its value lies not in prediction, but in enhancing our capacity to navigate uncertainty, learn from experience, and design conditions that support adaptive behavior. While significant challenges remain in operationalization, measurement, and integration with existing governance frameworks, the potential benefits for resilience, innovation, and quality are substantial.

Ultimately, embracing complexity does not mean abandoning standards, evidence, or accountability. Instead, it requires reframing these elements as dynamic, context-sensitive tools that support learning and adaptation in an ever-changing world.

REFERENCES

1. Abbott, R.; Hadžikadić, M. Complex adaptive systems, systems thinking, and agent-based modeling. In *Advanced Technologies, Systems, and Applications*; Springer: Berlin/Heidelberg, Germany, 2017.
2. Anderson, P. Complexity theory and organization science. *Organization Science* 1999, 10, 216–232.
3. Chan, S. Complex adaptive systems. In *ESD.83 Research Seminar in Engineering Systems*; MIT: Cambridge, MA, USA, 2001.
4. Cilliers, P. *Complexity and Postmodernism: Understanding Complex Systems*; Routledge: London, UK, 2002.
5. Donabedian, A. Quality assessment and assurance: unity of purpose, diversity of means. *Inquiry* 1988, 25, 173–192.
6. Ellis, B. Complexity in practice: understanding primary care as a complex adaptive system. *Journal of Informatics in Primary Care* 2010, 18, 135–140.
7. Ellis, B. *Managing Governance Programmes in Primary Care: Lessons from Case Studies of the Implementation of Clinical Governance in Two Primary Care Trusts*; PhD Thesis, University of Central Lancashire, Preston, 2008.
8. European Foundation for Quality Management. The EFQM Excellence Model. *Public and Voluntary Sector Version*; EFQM: Brussels, Belgium, 1999.
9. Gell-Mann, M. *The Quark and the Jaguar*; Freeman: New York, NY, USA, 1994.
10. Hodiamont, F.; Jünger, S.; Leidl, R.; Maier, B.O.; Schildmann, E.; Bausewein, C. Understanding complexity—the palliative care situation as a complex adaptive system. *BMC Health Services Research* 2019, 19, 1–14.
11. Holland, J.H. Complex adaptive systems. *Daedalus* 1992, 121, 17–30.
12. Hughes, G.; Shaw, S.E.; Greenhalgh, T. Rethinking integrated care: a systematic hermeneutic review of the literature on integrated care strategies and concepts. *Milbank Quarterly* 2020, 98, 446–492.
13. Jagustović, R.; Zougmoré, R.B.; Kessler, A.; Ritsema, C.J.; Keesstra, S.; Reynolds, M. Contribution of systems thinking and complex adaptive system attributes to sustainable food production. *Agricultural Systems* 2019, 171, 65–75.
14. Kauffman, S.A. *Origins of Order: Self-Organization and Selection in Evolution*; Oxford University Press: Oxford, UK, 1993.
15. Kernick, D. The demise of linearity in managing health services; a call for post-normal healthcare. *Journal of Health Services Research and Policy* 2002, 7, 121–124.
16. Kernick, D. *Complexity and Healthcare Organisation*; Radcliffe Publishing: Oxford, UK, 2002.
17. Kernick, D. *Complexity and Healthcare Organisation: A View from the Street*; Radcliffe Publishing: Oxford, UK, 2004.
18. Kitchenham, B.; Charters, S. Guidelines for Performing Systematic Literature Reviews in Software Engineering; EBSE Technical Report; Keele University and Durham University, 2007.
19. Ladyman, J.; Lambert, J.; Wiesner, K. What is a complex system? *European Journal for Philosophy of Science* 2013, 3, 33–67.
20. Martin-Martin, A.; Thelwall, M.; Orduna-Malea, E.; Delgado López-Cózar, E. Google Scholar, Microsoft Academic, Scopus, Dimensions, Web of Science, and OpenCitations' COCI. *Scientometrics* 2021, 126, 871–906.
21. Meek, J.W.; De Lauduranty, J.; Hewell, W.H. Complex systems, governance and policy administration consequences. *Emergence: Complexity and Organization* 2007, 9, 24–36.
22. Mitchell, M. Complex systems: Network thinking. *Artificial Intelligence* 2006, 170, 1194–1212.
23. Papert, S. Introduction. In *The Embodiments of Mind*; MIT Press: Cambridge, MA, USA, 1965.
24. Plsek, P.E.; Greenhalgh, T. The challenge of complexity in health care. *BMJ* 2001, 323, 625–628.
25. Reynolds, C.W. Flocks, herds and schools: a distributed behaviour model. *Computer Graphics* 1987, 21, 25–34.
26. Roper, W.; Cutler, C. Health plan accountability and reporting: issues and challenges. *Health Affairs* 1998, 17, 152–155.
27. Rouse, W.B. Health care as a complex adaptive system: implications for design and management. *The Bridge* 2008, 38, 17.
28. Simon, H.A. The architecture of complexity. In *Facets of Systems Science*; Springer: Berlin/Heidelberg, Germany, 1991.

29. Stroebel, C.K.; McDaniel, R.R. Jr.; Crabtree, B.F.; et al. How complexity science can inform a reflective process for improvement in primary care practices. *Joint Commission Journal on Quality and Patient Safety* 2005, 31, 438–446.
30. Zimmerman, B.; Lindberg, C.; Plsek, P. A Complexity Science Primer: What Is Complexity Science and Why Should I Learn About It? In *Edgeware: Lessons from Complexity Science for Health Care Leaders*; VHA Inc.: Dallas, TX, USA, 1998.