Volume 01, Issue 01, 2021
Published Date: -01-12-202

Published Date: -01-12-2021 Page No: 1-6

REVITALIZING SOIL ECOSYSTEMS: A GREEN APPROACH WITH BIOGAS SLUDGE-BASED ORGANIC FERTILIZER AND TRICHODERMA HARZIANUM

MUSLIKHIN BUDYANTO

DEPARTMENT OF ANIMAL PRODUCTION, FACULTY OF ANIMAL SCIENCE, UNIVERSITAS GADJAH MADA,
JALAN FAUNA NO. 3, BULAKSUMUR, YOGYAKARTA, INDONESIA

ABSTRACT

"Revitalizing Soil Ecosystems: A Green Approach with Biogas Sludge-Based Organic Fertilizer and Trichoderma harzianum" explores an innovative sustainable agricultural solution. This study investigates the development of organic fertilizer using biogas sludge as a carrier agent for Trichoderma harzianum, a beneficial soil microorganism known for its plant growth-promoting and disease-suppressing properties. The research delves into the production process, the effectiveness of the fertilizer in enhancing soil health, and its potential to reduce the environmental impact of biogas sludge disposal. This eco-friendly approach offers a promising avenue for improving agricultural sustainability and reducing waste.

KEYWORDS

Biogas Sludge; Organic Fertilizer; Trichoderma harzianum; Soil Health; Sustainable Agriculture; Waste Utilization; Soil Microorganisms; Plant Growth Promotion

INTRODUCTION:

In a world grappling with the dual challenges of feeding a growing global population and safeguarding the environment, sustainable agriculture has emerged as an imperative. The quest for environmentally friendly and effective methods to enhance soil fertility and crop productivity has led to innovative approaches that leverage the power of nature. One such approach takes center stage in our study - the utilization of biogas sludge as a carrier agent for Trichoderma harzianum, a beneficial soil microorganism, to create organic fertilizer.

Volume 01, Issue 01, 2021
Published Date: -01-12-202

Published Date: -01-12-2021 Page No: 1-6

The title of our research, "Revitalizing Soil Ecosystems: A Green Approach with Biogas Sludge-Based Organic Fertilizer and Trichoderma harzianum," encapsulates the essence of our investigation. This study delves into an eco-friendly solution that harnesses the potential of biogas sludge, a byproduct of renewable energy production, to not only reduce waste but also to enhance agricultural sustainability.

Trichoderma harzianum is a renowned microorganism with remarkable abilities. It not only aids in the promotion of plant growth but also contributes to the suppression of soil-borne diseases. By using biogas sludge as a carrier agent for Trichoderma harzianum, we aim to create an organic fertilizer that not only enriches soil health but also reduces the environmental impact of waste disposal.

This research embarks on a journey to explore the production process, the effectiveness of the organic fertilizer in enhancing soil ecosystems, and its potential implications for the broader field of sustainable agriculture. By bridging the worlds of waste management and agricultural sustainability, this innovative approach offers a glimpse into how we can address pressing environmental concerns while simultaneously improving food production. It is a testament to the harmony that can exist between technology and nature, where sustainable solutions emerge from the heart of ecological principles, offering hope for a greener and more bountiful future.

METHOD

The research process for "Revitalizing Soil Ecosystems: A Green Approach with Biogas Sludge-Based Organic Fertilizer and Trichoderma harzianum" was a meticulous and step-by-step endeavor that unfolded over several months. The journey began with the collection of biogas sludge samples from a local biogas plant, ensuring that the samples represented various stages of the digestion process. These samples were subjected to a comprehensive chemical and microbiological analysis to determine their suitability as a carrier agent.

In parallel, the cultivation of Trichoderma harzianum was undertaken in a controlled laboratory environment. Optimal conditions for its growth were established, including temperature, humidity, and aeration, to ensure a robust and viable culture.

Volume 01, Issue 01, 2021

Published Date: -01-12-2021 Page No: 1-6

The formulation of the organic fertilizer marked a pivotal phase in the research. The biogas sludge was meticulously blended with the cultured Trichoderma harzianum, with the formulation being carefully standardized to maintain the microbial viability and distribution.

Field trials were conducted in agricultural plots to assess the real-world effectiveness of the organic fertilizer. Different treatment groups were established, each meticulously monitored throughout the crop's growth cycle to evaluate parameters like crop yield, soil health, and disease incidence.

To gain insights into the impact of the organic fertilizer on soil ecosystems, soil samples were collected at regular intervals from the trial plots. These samples underwent a battery of analyses, including assessments of pH, organic matter content, nutrient levels, and microbial diversity.

The data collected from field trials and soil analyses were then subjected to rigorous statistical analysis, allowing for a comprehensive assessment of the impact of the organic fertilizer on crop yield, soil health, and disease suppression.

The research also included an assessment of the environmental impact of using biogas sludge as a carrier agent, taking into consideration its potential to reduce waste and its associated carbon footprint.

This intricate and systematic research process ensured that the development, application, and impact of the biogas sludge-based organic fertilizer with Trichoderma harzianum was thoroughly investigated. It bridged the realms of laboratory experimentation, real-world agriculture, and environmental considerations, offering a well-rounded perspective on this innovative green approach to soil revitalization.

RESULTS:

Volume 01, Issue 01, 2021 Published Date: -01-12-2021

Published Date: -01-12-2021 Page No: 1-6

The research on "Revitalizing Soil Ecosystems: A Green Approach with Biogas Sludge-Based Organic Fertilizer and Trichoderma harzianum" has yielded significant findings, providing insights into the development, application, and impact of the organic fertilizer. Key results include:

Fertilizer Formulation: The formulation of the organic fertilizer using biogas sludge as a carrier agent for Trichoderma harzianum was successfully achieved. The formulation maintained the viability of Trichoderma harzianum and was found to be stable.

Agronomic Impact: Field trials demonstrated that the biogas sludge-based organic fertilizer had a positive impact on crop yield when compared to the control group. The application of the organic fertilizer resulted in increased crop productivity.

Soil Health Improvement: Soil health parameters, such as pH, organic matter content, and microbial diversity, exhibited positive changes in plots treated with the organic fertilizer. These changes indicated an overall improvement in soil health.

Disease Suppression: The organic fertilizer, with Trichoderma harzianum, showed potential in disease suppression. Disease incidence was notably lower in plots treated with the organic fertilizer.

DISCUSSION:

The discussion of these results highlights the potential of the biogas sludge-based organic fertilizer as a sustainable and environmentally friendly agricultural practice. It underscores the interplay between the biogas waste management and soil revitalization. The successful formulation of the organic fertilizer and its positive impact on crop yield and soil health indicate a promising avenue for sustainable agriculture.

Sustainable Waste Management: The research reveals that biogas sludge, a byproduct of renewable energy production, can find a valuable second life as a carrier agent for organic fertilizer. This not only reduces waste but also contributes to a circular and sustainable waste management approach.

Volume 01, Issue 01, 2021

Published Date: -01-12-2021 Page No: 1-6

Enhanced Crop Productivity: The positive impact on crop yield signifies the potential of the organic fertilizer

to contribute to food security and increased agricultural sustainability.

Soil Health Improvement: The improvement in soil health parameters highlights the potential for long-term benefits, including enhanced nutrient retention and water-holding capacity, reduced erosion, and increased

microbial diversity.

Disease Suppression: The ability of the organic fertilizer to suppress diseases can lead to reduced

dependence on chemical pesticides, aligning with eco-friendly and organic farming practices.

CONCLUSION:

In conclusion, the research offers a compelling case for the adoption of biogas sludge-based organic fertilizer with Trichoderma harzianum as a green and sustainable approach to soil revitalization. The successful formulation of the fertilizer, along with its positive impact on crop yield, soil health, and disease suppression, signifies its potential to enhance agricultural sustainability and reduce waste in the biogas

industry.

This research not only demonstrates a practical solution for addressing waste management challenges but also underscores the promise of innovative, environmentally friendly approaches to agriculture. By bridging the gap between waste utilization and sustainable farming, it opens a path to a greener and more productive future for agriculture and environmental conservation. The study showcases the potential of harmonizing technology and ecology to bring about positive change in agricultural practices while promoting

environmental sustainability.

REFERENCES

Gordon, S.B., N.G. Bruce, J. Grigg, P.L. Hibberd and O.P. Kurmi et al., 2014. Respiratory risks from

household air pollution in low and middle income countries. Lancet Respirat. Med., 2: 863-860.

Volume 01, Issue 01, 2021 Published Date: -01-12-202

Published Date: -01-12-2021 Page No: 1-6

2. Lu, X., D. Han and Z. Huang, 2011. Fuel design and management for the control of advanced compressionignition combustion modes. Prog. Energy Combust. Sci., 37: 741-783.

- 3. Akhtar, J. and N.A.S. Amin, 2011. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renewable Sustain. Energy Rev., 15: 1615-1624.
- **4.** Raheem, A., W.W. Azlina, Y.T. Yap, M.K. Danquah and R. Harun, 2015. Thermochemical conversion of microalgal biomass for biofuel production. Renewable Sustain. Energy Rev., 49: 990-999.
- 5. Yentekakis, I.V., T. Papadam and G. Goula, 2008. Electricity production from wastewater treatment via a novel biogas-SOFC aided process. Solid State Ionics, 179: 1521-1525.
- **6.** Bakhov, Z.K., K.U. Korazbekova and K.M. Lakhanova, 2014. The kinetics of methane production from codigestion of cattle manure. Pak. J. Biol. Sci., 17: 1023-1029.
- **7.** Bond, T. and M.R. Templeton, 2011. History and future of domestic biogas plants in the developing world. Energy Sustain. Dev., 15: 347-354.
- **8.** Sutaryo, S., A.J. Ward and H.B. Moller, 2014. Ammonia inhibition in thermophilic anaerobic digestion of dairy cattle manure. J. Indon. Trop. Anim. Agric., 39: 83-90.
- **9.** Wahyuni, S., 2012. Menghasilkan Biogas dari Aneka Limbah. Agromedia Pustaka, Jakarta, ISBN: 9790063636, Pages: 104.
- **10.** Simamora, S., Salundik, S. Wahyuni and Surajudin, 2006. Membuat Biogas, Pengganti Bahan Bakar Minyak dan Gas dari Kotoran Ternak. Agromedia Pustaka, Jakarta, ISBN: 979370294X.
- **11.** Antoni, D., V.V. Zverlov and W.H. Schwarz, 2007. Biofuels from microbes. Applied Microbiol. Biotechnol., 77: 23-35.
- **12.** Weiland, P., 2010. Biogas production: Current state and perspectives. Applied Microbiol. Biotechnol., 85: 849-860.