academic publishers

International journal of biological sciences (ISSN: 2693-3608)

Volume 05, Issue 01, 2025, pages 01-04

Published Date: - 01-01-2025

PRELIMINARY STUDY ON THE FACTORS CONTRIBUTING TO POST-HARVEST FUNGAL ROT IN TOMATOES

Jude S

Department of Plant Science and Bitechnology University of Nigeria, Nsukka

Abstract

Tomato post-harvest fungal rot represents a significant challenge in the agriculture industry, leading to substantial economic losses and reduced quality of produce. This preliminary study investigates the factors contributing to fungal rot in tomatoes following harvest. We conducted a series of experiments to identify the fungal species responsible for the rot and examined environmental conditions, handling practices, and storage methods that may exacerbate the problem. The study involved sampling tomatoes from different stages of the supply chain, analyzing fungal contamination, and assessing the impact of various storage conditions on fungal growth. Our findings indicate that specific fungal species, such as Fusarium and Botrytis, are prevalent in post-harvest tomatoes. Additionally, improper handling and suboptimal storage conditions significantly increase the incidence of fungal rot. These insights highlight critical areas for intervention, including improved handling practices and optimized storage conditions to mitigate fungal contamination. The results of this study provide a foundational understanding of the factors leading to post-harvest fungal rot and suggest practical measures to enhance tomato storage and handling practices.

Keywords

Post-harvest, fungal rot, tomatoes, fungal species, Fusarium, Botrytis, storage conditions, handling practices, contamination, agricultural losses.

INTRODUCTION

Tomatoes are a staple in global agriculture and culinary practices, but their post-harvest quality is critically threatened by fungal rot, which causes significant economic losses and compromises consumer satisfaction. Post-harvest fungal rot is a complex issue involving various fungal pathogens that thrive under specific conditions, impacting both the quality and safety of tomato produce. Fungal rot in tomatoes can occur due to several factors including environmental conditions, handling practices, and storage methods. Pathogens such as Fusarium and Botrytis have been identified as primary contributors to this problem, leading to extensive damage and reduced shelf life of the fruit. Understanding the interplay between these factors and their effects on fungal growth is essential for developing effective strategies to mitigate post-harvest losses.

This preliminary study aims to explore the factors contributing to post-harvest fungal rot in tomatoes by examining the prevalence of different fungal species and the impact of various environmental and handling conditions. By identifying the key drivers of fungal contamination and assessing the efficacy of current storage practices, this research seeks to provide foundational insights that can guide improvements in post-harvest management and reduce the economic burden associated with fungal rot.

The study involves sampling tomatoes from different stages of the supply chain, analyzing fungal contamination patterns, and evaluating the influence of handling and storage conditions on fungal growth. The findings are expected to reveal critical factors that exacerbate fungal rot and suggest practical measures to enhance the post-harvest management of tomatoes, thereby improving their quality and extending their shelf life.

INTERNATIONAL JOURNAL OF DATA SCIENCE AND MACHINE LEARNING

METHOD

In this preliminary study, a comprehensive approach was employed to investigate the factors contributing to post-harvest fungal rot in tomatoes. The study was conducted in two main phases: sampling and analysis, with a focus on identifying fungal pathogens and evaluating the impact of different handling and storage conditions on fungal rot development.

The study began with the collection of tomato samples from various stages of the supply chain, including farms, packing houses, and retail outlets. A total of 150 tomato samples were collected, ensuring a representative mix of different cultivars and maturity stages. Each sample was inspected visually for signs of fungal rot and then carefully packaged in sterile containers to prevent cross-contamination. Samples were transported to the laboratory under controlled conditions to maintain their integrity.

In the laboratory, the tomatoes were examined for fungal contamination. A portion of each sample was surface-sterilized using a solution of sodium hypochlorite followed by ethanol to eliminate any external contaminants. The tomatoes were then sliced and placed on selective fungal media, including Potato Dextrose Agar (PDA) and Sabouraud Dextrose Agar (SDA), to isolate fungal colonies. The isolated fungi were identified using morphological characteristics and molecular techniques, such as PCR amplification and sequencing, to confirm the species present. The predominant fungal species identified included Fusarium oxysporum and Botrytis cinerea, among others.

To evaluate the impact of handling and storage conditions on fungal rot, a controlled experiment was conducted. Tomatoes were divided into groups and subjected to different handling practices, including varying levels of physical damage and exposure to moisture. The tomatoes were then stored under different conditions: room temperature $(25^{\circ}C)$, refrigerated conditions $(4^{\circ}C)$, and high-humidity environments (90% relative humidity). The storage period lasted for 14 days, with regular assessments every 2 days to monitor the development of fungal rot.

Data on fungal rot incidence and severity were collected by inspecting the tomatoes visually and recording the number and extent of rot spots. Additional measurements included fungal colony counts from the agar plates and environmental parameters such as temperature and humidity. Statistical analysis was performed to determine the correlation between handling practices, storage conditions, and the incidence of fungal rot. Techniques such as ANOVA and regression analysis were used to identify significant factors influencing fungal contamination and rot development.

All experimental procedures were conducted in accordance with ethical guidelines for research involving plant materials. Measures were taken to ensure the proper disposal of contaminated materials and to minimize any environmental impact. The methodology employed in this preliminary study provides a detailed examination of the factors contributing to post-harvest fungal rot in tomatoes. By analyzing the impact of handling and storage conditions on fungal growth and identifying the key fungal pathogens involved, the study aims to offer insights that can help in developing strategies to reduce post-harvest losses and improve tomato quality.

RESULTS

The results of this preliminary study provide a comprehensive overview of the factors contributing to post-harvest fungal rot in tomatoes. The analysis focused on the prevalence of different fungal pathogens and the impact of handling and storage conditions on the development of fungal rot.

The fungal isolation and identification process revealed the presence of several pathogenic fungi in the tomato samples. The most commonly identified species were Fusarium oxysporum and Botrytis cinerea, which were found in approximately 60% and 45% of the samples, respectively. Other fungi, including Alternaria spp. and Aspergillus spp., were also detected but at lower frequencies. The identification of these pathogens was confirmed through morphological analysis and molecular techniques, ensuring accurate species identification.

The experimental analysis of different handling practices showed a significant correlation between physical damage and the incidence of fungal rot. Tomatoes subjected to high levels of physical impact exhibited a 40% higher rate of fungal contamination compared to those with minimal handling. The damage included bruising and surface abrasions, which were found to facilitate fungal entry and proliferation. Additionally, tomatoes that were exposed to moisture during handling showed a 30% increase in fungal rot compared to those handled under dry conditions.

Storage conditions had a pronounced effect on the development of fungal rot. Tomatoes stored at room temperature (25°C) showed the highest rate of fungal rot, with 70% of the tomatoes exhibiting significant decay by the end of the 14-day storage period. In contrast, tomatoes stored under refrigerated conditions (4°C) had a considerably lower incidence of rot, with only 20% of tomatoes showing signs of decay. The high-humidity environment (90% relative humidity) also contributed to increased fungal rot, with 55% of tomatoes affected. The combination of high temperature and high humidity was particularly conducive to fungal growth.

Statistical analysis of the data revealed that both handling practices and storage conditions significantly influenced the incidence of fungal rot. ANOVA results indicated that physical damage (p < 0.01) and high humidity (p < 0.05) were significant factors contributing to increased fungal contamination. Regression analysis further confirmed that temperature and humidity had a strong impact on fungal growth rates, with higher temperatures and humidity levels correlating with greater severity of rot.

The results of this preliminary study underscore the critical role of handling practices and storage conditions in the development of post-harvest fungal rot in tomatoes. The findings highlight the need for improved handling techniques to minimize physical

INTERNATIONAL JOURNAL OF BIOLOGICAL SCIENCES

damage and for optimized storage conditions to reduce fungal contamination. The identification of key fungal pathogens and their association with specific environmental conditions provides valuable insights for developing effective strategies to mitigate post-harvest losses and enhance tomato quality.

DISCUSSION

This preliminary study provides valuable insights into the factors contributing to post-harvest fungal rot in tomatoes, highlighting the significant roles of fungal pathogens, handling practices, and storage conditions in the deterioration of tomato quality. The findings reveal several critical aspects that can inform strategies to mitigate fungal rot and improve post-harvest management. The study identified Fusarium oxysporum and Botrytis cinerea as the predominant fungal pathogens in post-harvest tomatoes. These pathogens are well-known for their ability to cause extensive damage to fruits, with Botrytis cinerea often associated with gray mold, and Fusarium oxysporum linked to vascular wilt and rot. The prevalence of these fungi underscores the need for targeted control measures to manage their growth and prevent contamination. The identification of additional fungal species, such as Alternaria spp. and Aspergillus spp., also suggests a diverse microbial environment that may further complicate post-harvest disease management.

The results demonstrate a clear correlation between physical damage during handling and increased fungal rot. Tomatoes subjected to bruising and abrasions exhibited a higher incidence of fungal contamination, likely due to compromised fruit integrity that facilitates fungal entry. These findings emphasize the importance of adopting gentle handling practices to minimize physical damage. Training for harvest and packing personnel, along with the use of appropriate packaging materials, can play a crucial role in reducing mechanical injuries and thereby decreasing the likelihood of fungal rot.

Storage conditions were found to have a significant impact on fungal growth and rot development. Tomatoes stored at room temperature (25°C) experienced the highest rate of fungal rot, confirming that elevated temperatures are conducive to fungal proliferation. Conversely, refrigeration at 4°C effectively reduced the incidence of rot, highlighting the importance of maintaining low temperatures to inhibit fungal growth. The study also observed increased fungal rot in high-humidity environments (90% relative humidity), which suggests that moisture promotes fungal development. These findings support the implementation of optimal storage practices, including temperature control and humidity management, to extend the shelf life of tomatoes and reduce post-harvest losses.

The results of this study have several practical implications for post-harvest tomato management. Addressing physical damage through improved handling techniques and packaging can significantly reduce the incidence of fungal rot. Additionally, optimizing storage conditions by controlling temperature and humidity is crucial for minimizing fungal contamination and preserving tomato quality. The insights gained from this research can inform the development of effective strategies and protocols for managing post-harvest fungal rot, ultimately leading to better preservation of tomato produce and reduced economic losses for producers and retailers.

While this study provides valuable preliminary data, there are limitations that should be addressed in future research. The study's scope was limited to a specific number of samples and environmental conditions; therefore, expanding the research to include a broader range of conditions and cultivars could yield more comprehensive results. Additionally, investigating the interactions between different fungal species and their combined effects on rot development would enhance our understanding of the disease dynamics. Future research should also explore potential biological and chemical control methods to manage fungal pathogens more effectively.

This preliminary study highlights the key factors contributing to post-harvest fungal rot in tomatoes, including the role of specific fungal pathogens, handling practices, and storage conditions. By addressing these factors, it is possible to improve post-harvest management and reduce fungal contamination, thereby enhancing the quality and shelf life of tomatoes. The findings provide a foundation for further research and practical interventions aimed at mitigating post-harvest losses in tomato production.

CONCLUSION

This preliminary study offers critical insights into the factors contributing to post-harvest fungal rot in tomatoes, a significant issue affecting both quality and economic value in the agricultural sector. The research highlights the dominant role of specific fungal pathogens, particularly Fusarium oxysporum and Botrytis cinerea, in causing fungal rot, and underscores the impact of handling practices and storage conditions on the development and severity of this problem.

The findings demonstrate that physical damage to tomatoes during handling substantially increases the incidence of fungal rot, suggesting that improving handling techniques and minimizing fruit bruising are essential steps in reducing post-harvest losses. Additionally, the study reveals that storage conditions, including temperature and humidity levels, play a crucial role in fungal growth. Refrigeration effectively reduces fungal rot, while high humidity conditions exacerbate the problem, emphasizing the need for stringent control of storage environments.

Overall, the study provides valuable recommendations for improving post-harvest management of tomatoes. Implementing best practices in handling and storage, such as using gentle handling methods and optimizing storage conditions, can significantly mitigate the impact of fungal rot. These measures will not only enhance tomato quality but also help reduce economic losses for producers and retailers.

Future research should build upon these findings by exploring a wider range of conditions, including different tomato varieties

INTERNATIONAL JOURNAL OF DATA SCIENCE AND MACHINE LEARNING

and additional environmental factors. Investigating alternative control methods and further understanding the interactions between various fungal species will also be beneficial. By continuing to refine post-harvest management strategies based on comprehensive research, it is possible to achieve more effective control of fungal rot and ensure better preservation of tomato produce.

REFERENCE

- 1. Agrios, G.N. (2005). Plant Pathology. Academic Press, New york. 922pp.
- 2. Alexopoulos, C. O., Mims, C.W. and Blackwell, M. (2002). Introductory Mycology.
- 3. (4th edition). John Wiley and Sons Inc. Singapore, 869pp.
- 4. Barnett, H.L. and Hunter, B.B. (1999). Illustrated Genera of Imperfect Fungi, (4 th edition). The American Phytopathological Society . St. Paul, Minnessota, USA, 218pp.
- 5. Chiejina, N.V. (2008). Mycoflora of some salad vegetables. Bio-Research.6(2):392-395.
- 6. Coursey, D.G. (1983). Postharvest losses in perishable foods of the developing world, pp485-515. In: Postharvest Physiology and Crop preservation, (ed) Liberman M. Plenum Press, NY. 515pp
- 7. Eckert, J. W. and Sommer, N.F. (1967) Control of diseases of Fruits and Vegetables by Post-harvest Treatment. Annual Review Plant Pathology 5:391-432
- 8. Kader, A.A. (2002). Post-harvest Technology of Horticultural crops. University of California, Agriculture and Natural Resources. 535pp.
- 9. Kurup, V.P. (2003). Fungal Allergens. Curr. Allergy Asthma Rep 3:416-423.
- 10. Liu, M.S. and Ma, P.C. (1983). Post-harvest problems of vegetables and fruits in the
- 11. Tropics and subtropics. Asian Vegetable Research and Development Center.
- 12. 0 th Anniversary monograph Series. Taiwan, China.14pp.
- 13. Mehrotra, R. S. and Aggarwal, A. (2003). Plant pathology. 2nd Ed. Tata McGraw-Hill. New Delhi. 846pp.
- 14. Michailides, T. J. and Spotts, R. A. (1990). Postharvest diseases of pome and stone fruits caused by Mucor piriformis in the Pacific Northwest and California. Plant Diseases 74:537-543.
- 15. Moss, M.O. (2002). Mycotoxin Review. 1. Aspergillus penillium. Mycologist, 16:116-119.
- 16. Okigbo, R.N., Ramesh P. and Achusi, C.T (2009). Post-Harvest Deterioration of Cassava and its Control Using Extracts of Azadirachta indica and Aframomum melegueta. E-Journal of Chemistry 6(4), 1274-1280.
- 17. Phillip, D.J. (1984). Mycotoxins as a post-harvest problem, pp50-54. In: Post-harvest pathology of fruits and vegetables; Postharvest losses in perishable crops. Moline, H.E. (ed). Agricultural experimental station. University of California, Berkeley Publications. NE. 461pp.