Published Date: - 02-05-2022 Page No: 1-5

METALLIC SHOWDOWN: IRON VS. ALUMINUM ELECTRODES IN METHYLENE BLUE DE-COLORIZATION VIA ELECTRO-COAGULATION

GHAHRAMANI, MOSTAFA

DEPARTMENT OF ENVIRONMENTAL HEALTH ENGINEERING, FACULTY OF HEALTH, ALBORZ UNIVERSITY OF MEDICAL SCIENCES, KARAJ, I.R. IRAN

ABSTRACT

This study presents a comparative investigation into the efficient de-colorization of Methylene Blue dye using the electro-coagulation method, employing both iron and aluminum electrodes. Electro-coagulation is a promising technique for water treatment, and the choice of electrode material can significantly influence its efficiency. Through a series of experiments, the performance of iron and aluminum electrodes in removing Methylene Blue dye from aqueous solutions was evaluated. The process parameters, including electrode material, current density, pH, and reaction time, were systematically examined to assess their impact on de-colorization efficiency. The results reveal distinct differences in the performance of iron and aluminum electrodes, shedding light on their suitability for electro-coagulation applications in water treatment.

KEYWORDS

Methylene Blue; Electro-coagulation; Iron electrode; Aluminum electrode; Water treatment; Dye removal; Comparative study

INTRODUCTION

Water pollution resulting from the discharge of synthetic dyes into natural water bodies is a growing environmental concern. Methylene Blue, a commonly used dye in various industries, poses significant challenges due to its persistence and adverse impacts on aquatic ecosystems. Effective methods for removing Methylene Blue from wastewater are essential to mitigate its environmental consequences. Among the numerous treatment approaches available, electro-coagulation has gained prominence as an efficient and eco-friendly technique for dye removal.

Volume 02, Issue 02, 2022

Published Date: - 02-05-2022 Page No: 1-5

Electro-coagulation involves the use of electrodes to introduce coagulants into water, facilitating the aggregation and precipitation of contaminants. The choice of electrode material is a critical factor influencing the efficiency of this process. Iron and aluminum electrodes have emerged as two promising candidates for electro-coagulation due to their cost-effectiveness and compatibility with a wide range of contaminants. However, their performance in de-colorizing Methylene Blue and the underlying mechanisms of dye removal have not been comprehensively explored.

This study presents a comparative analysis of the de-colorization efficiency of Methylene Blue using iron and aluminum electrodes in the electro-coagulation process. By systematically varying process parameters such as electrode material, current density, pH, and reaction time, we aim to unravel the distinctive characteristics of these two materials in dye removal. The findings of this investigation not only contribute to a deeper understanding of the electro-coagulation mechanism but also offer insights into selecting the most suitable electrode material for efficient Methylene Blue de-colorization, advancing the development of sustainable water treatment strategies.

The experimental process began with the preparation of Methylene Blue (MB) dye solutions of known concentrations. These solutions were used to simulate dye-contaminated water, representing the target wastewater for treatment.

A customized electro-coagulation cell was employed as the experimental setup. The cell consisted of two compartments, each housing an iron (Fe) or aluminum (Al) electrode, respectively. The electrodes were positioned parallel to each other with a fixed distance between them, ensuring a consistent electrode surface area for both materials.

The de-colorization experiments were conducted by introducing the MB dye solution into the electrocoagulation cell. The selection of the electrode material (either Fe or Al) was a variable of interest, allowing for direct comparison of their de-colorization efficiency. The current density, pH of the solution, and reaction time were systematically controlled and adjusted to investigate their influence on the process.

The electro-coagulation process was initiated by applying a predetermined electrical current to the electrodes. During the treatment, metal cations (Fe or Al) were released from the respective electrodes into the solution due to electrochemical reactions. These metal cations acted as coagulants, facilitating the aggregation and precipitation of the MB dye molecules.

Throughout the experiments, samples were periodically withdrawn from the electro-coagulation cell, and the residual MB dye concentration was determined through spectrophotometric analysis. The changes in absorbance values were used to calculate the de-colorization efficiency, allowing for a quantitative assessment of the performance of both Fe and Al electrodes in removing MB dye from the solution.

INTERNATIONAL JOURNAL OF CHEMISTRY AND CHEMICAL ENGINEERING (ISSN: 2693-356X)

Volume 02, Issue 02, 2022

Published Date: - 02-05-2022 Page No: 1-5

The experimental process was repeated under various combinations of current densities, pH levels, and reaction times to explore the impact of each parameter on de-colorization efficiency. The results of these experiments were analyzed to elucidate the differences in the performance of iron and aluminum electrodes in the electro-coagulation of Methylene Blue dye, providing valuable insights into their suitability for water treatment applications.

RESULTS

The results of the comparative study on the de-colorization of Methylene Blue (MB) via electro-coagulation using iron (Fe) and aluminum (Al) electrodes revealed distinct differences in their performance. The experiments were conducted under varying conditions of current density, pH, and reaction time to comprehensively assess the efficiency of each electrode material in dye removal.

At a fixed current density, the de-colorization efficiency of MB was found to be higher when aluminum electrodes were employed compared to iron electrodes. Aluminum electrodes consistently achieved a greater reduction in MB concentration across all tested conditions. This observation was particularly pronounced at higher current densities and longer reaction times. The effect of pH on de-colorization efficiency showed some variation, with both Fe and Al electrodes demonstrating optimal performance at slightly different pH ranges.

DISCUSSION

The observed differences in the de-colorization efficiency of MB between iron and aluminum electrodes can be attributed to several factors. One key factor is the release of metal cations (Fe²⁺ and Al³⁺) during the electro-coagulation process. These metal cations act as coagulants and aid in the destabilization of MB dye molecules by forming flocs through charge neutralization and adsorption mechanisms.

Aluminum electrodes are known to release aluminum ions (Al^{3+}), which possess a higher charge and exhibit superior coagulation potential compared to iron ions (Fe^{2+}). This enhanced coagulation ability of aluminum ions contributes to the higher de-colorization efficiency observed with aluminum electrodes.

Additionally, the rate of metal cation release from the electrodes is influenced by the applied current density. Higher current densities result in a greater release of metal cations, leading to enhanced coagulation and subsequently more efficient dye removal. This explains the increased de-colorization efficiency observed at higher current densities for both Fe and Al electrodes.

Published Date: - 02-05-2022 Page No: 1-5

The influence of pH on the electro-coagulation process is noteworthy. pH affects the solubility and speciation of metal ions in solution, which, in turn, impacts their coagulation behavior. The optimal pH for de-colorization differed for iron and aluminum electrodes, reflecting variations in the chemistry of metal cations released during the electro-coagulation process.

In conclusion, this comparative study provides valuable insights into the de-colorization of Methylene Blue dye using iron and aluminum electrodes in electro-coagulation. The results demonstrate the superior performance of aluminum electrodes, attributed to the release of highly charged aluminum ions and their enhanced coagulation potential. This study underscores the significance of electrode material selection in optimizing electro-coagulation processes for dye removal, with implications for various water treatment applications where efficient color and pollutant removal are paramount.

REFERENCES

- 1. Jun-xia Y., Bu-hai L., Xiao-mei S., Yuan J., Ru-an C., Adsorption of Methylene Blue and Rhodamine B on Bakerís Yeast and Photocatalytic Regeneration of the Biosorbent, Biochemical Engineering Journal, 45 (2): 145-151 (2009).
- 2. Asha S., Thiruvenkatachari V., Decolorization of Dye Wastewaters by Biosorbents: A Review, Journal of Environmental Management, 91 (10): 1915-1929 (2010).
- **3.** Arh-Hwang C., Shin-Ming C., Biosorption of Azo Dyes from Aqueous Solution by Gutaraldehyde-Crosslinked Chitosans, Journal of Hazardous Materials, 172 (2-3): 1111-1121(2009).
- 4. Mohammad Reza S., Mansur Z., Mohammad N.S., Reza P., Maryam F., Removal of Acid Red 14 by Pumice Stoneas a Low Cost Adsorbent: Kinetic and Equilibrium Study, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 31 (3): 19-27 (2012).
- 5. Ali Reza R., Mansur Z., Mohammad Reza S., Abbas A., Hamid Reza G., Degradation of Azo Dye Reactive Black 5 and Acid Orange 7 by Fenton-Like Mechanism, Iranian Journal of Chemical Engineering (IJCCE), 7 (1): 87-94 (2010).
- 6. Reza S., Vahid V., Mansur Z., Akram V., Adsorption of Acid Red 18 (AR18) by Activated Carbon from Poplar Wood: A Kinetic and Equilibrium Study, E-J Chemistry, 7 (1): 65-72 (2010).
- 7. Mohammad Reza S., Mansur Z., Mohammad N.S., Abdeltif A., Gholam Hossein S., Saied B., Application of Acidic Treated Pumice as an Adsorbent for the Removal of Azo Dyefrom Aqueous Solutions: Kinetic, Equilibrium and Thermodynamic Studies, Journal of Environmental Health Science and Engineering, 9 (1): 9-16 (2012).
- 8. Ozlem T., Hacer T., Zumriye A., Potential Use of Cotton Plant Wastes for the Removal of Remazol Black B reactive dye, Journal of Hazardous Materials, 163 (1): 187-198 (2009).

INTERNATIONAL JOURNAL OF CHEMISTRY AND CHEMICAL ENGINEERING (ISSN: 2693-356X)

Volume 02, Issue 02, 2022

Published Date: - 02-05-2022 Page No: 1-5

9. Xubiao L., Youcai Z., Yining H., Lixia Y., Xinman T., Shenglian L., Removal of Water-Soluble Acid Dyes from Water Environment Using a Novelmagnetic Molecularly Imprinted Polymer, Journal of Hazardous Materials, 187 (1-3): 274-282 (2011).

- **10.** Magdalena G., Zbigniew H., Efficient Removal of Acid Orange 7 Dye from Water Using the Strongly Basic Anionexchange Resin Amberlite IRA-958, Desalination, 278 (1-3): 219-226 (2011).
- 11. Hua F., Jin S.Y., Tong G.G., Hong Li Y., Removal of a Low-Molecular Basic Dye (Azure Blue) from Aqueous Solutions by a Native Biomass of a Newly Isolated Cladosporium sp.: Kinetics, Equilibrium and Biosorption Simulation, Journal of the Taiwan Institute of Chemical Engineers, 43 (3): 386-392 (2012).