INTERNATIONAL JOURNAL OF CHEMISTRY AND CHEMICAL ENGINEERING (ISSN: 2693-356X)

Volume 05, Issue 02, 2025, pages 8-14 Published Date: - 01-08-2025

Assessing the Fidelity of Published Liquid-Liquid Equilibrium Correlation Parameters: An Ongoing Scrutiny

Dr. Nina T. Velasquez

Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA

ABSTRACT

This study critically evaluates the fidelity of published correlation parameters used in modeling liquid-liquid equilibrium (LLE) systems. As accurate phase behavior predictions are vital for designing separation processes, particularly in solvent extraction and chemical engineering applications, the reliability of reported parameters—often derived from empirical or semi-empirical models—remains under scrutiny. Through a comprehensive review and re-evaluation of selected literature datasets, this research identifies discrepancies between experimental data and model predictions, highlighting instances of poor parameter reproduction, inconsistencies in data sources, and gaps in methodological transparency. The analysis underscores the importance of standardization, reproducibility, and rigorous validation in publishing LLE parameters. Ultimately, the findings advocate for enhanced peer-review protocols and the adoption of open-access databases to improve trust and utility in LLE modeling across academia and industry.

KEYWORDS

Liquid-liquid equilibrium, correlation parameters, model fidelity, phase behavior, thermodynamic consistency, data reliability, parameter validation, separation processes, solvent extraction, chemical engineering thermodynamics.

INTRODUCTION

Liquid-liquid extraction (LLE) stands as a cornerstone separation technique in various chemical and biochemical industries, offering a viable alternative or complement to distillation, particularly for heat-sensitive materials, azeotropic mixtures, or components present in low concentrations [2]. The accurate design and optimization of LLE processes fundamentally rely on a precise understanding of phase equilibria, which is typically described through thermodynamic models. These models, such as NRTL (Non-Random Two-Liquid) and UNIQUAC (Universal Quasi-Chemical), employ adjustable correlation parameters to represent the non-ideal behavior of mixtures and predict the equilibrium compositions of coexisting liquid phases.

The scientific literature is replete with studies reporting experimental LLE data alongside correlated parameters for these thermodynamic models. However, a critical concern has emerged regarding the reliability and physical consistency of some of these published correlation parameters [1]. While a good fit to experimental tie-line data is a necessary condition, it is not sufficient to guarantee the physical validity of the parameters. Erroneous parameters can lead to predictions that violate fundamental thermodynamic principles, such as predicting non-existent miscibility gaps, incorrect plait point locations, or physically impossible phase behavior [4]. Such inaccuracies can have severe consequences for process simulation, design, and scale-up, potentially leading to suboptimal or even

failed industrial operations.

This article aims to scrutinize the ongoing challenge of ensuring the fidelity of published LLE correlation parameters. It highlights the necessity of rigorous assessment methodologies that extend beyond simple data fitting, emphasizing the importance of thermodynamic consistency and topological analysis of Gibbs free energy surfaces. By reviewing the issues and proposing best practices, this work seeks to contribute to the generation and dissemination of more reliable LLE data and parameters, crucial for the advancement of chemical engineering science and practice.

METHODS

The assessment of LLE correlation parameter reliability extends beyond mere statistical goodness-of-fit to experimental data. A robust methodology for evaluating these parameters must incorporate fundamental thermodynamic principles, particularly phase stability analysis. The core approach involves the topological analysis of the Gibbs free energy (GM) surfaces and curves of the system [3, 9, 11].

The primary steps and considerations in this assessment framework include:

Data Collection and Model Selection: Experimental LLE tie-line data for binary and ternary systems are collected from various sources, including recent studies involving environmentally friendly solvents or biofuels [5, 6, 7]. Thermodynamic models, such as NRTL or UNIQUAC, are selected for correlation, given their widespread use in chemical process simulation software like ASPEN-PLUS [10].

Parameter Correlation and Optimization: The model parameters are typically determined by minimizing an objective function that quantifies the difference between experimental and calculated tie-line compositions. Optimization algorithms, such as the General Reduced Gradient (GRG) method [15, 16], are often employed for this purpose. However, the optimization process must be carefully constrained to avoid physically unrealistic solutions.

Thermodynamic Consistency Checks (Phase Stability Analysis): This is the most crucial step. It involves:

Hessian Matrix Analysis: For a system at equilibrium, the Hessian matrix of the Gibbs free energy with respect to composition must be positive definite. A non-positive definite Hessian indicates an unstable or metastable region, which should not be predicted as a stable equilibrium by the correlation parameters [11].

Spinodal Curve Determination: The spinodal curve defines the boundary of stability for a homogeneous phase. The calculated parameters should ensure that the predicted two-phase region lies entirely within the spinodal curve, and that the spinodal curve does not intersect the binodal curve (miscibility gap boundary) in an unphysical manner [3, 9].

Miscibility Boundary Analysis: The correlation parameters must accurately predict the miscibility boundaries of the system, including the correct shape and size of the immiscibility region. This includes ensuring that certain binary pairs, if known to be totally miscible, are indeed predicted as such by the parameters, even within a ternary system context [8].

Plait Point Location: The plait point, where the two equilibrium phases become identical, must be correctly located within the miscibility gap. Its position is critical for understanding separation efficiency [3].

Graphical User Interface (GUI) Tools: Specialized software tools, such as GMcal_TieLinesLL [3], are invaluable for performing these topological analyses. These GUIs allow for the visualization of GM surfaces, tie-lines, spinodal curves, and miscibility boundaries, enabling a visual and quantitative assessment of the thermodynamic consistency of the correlated parameters.

AMERICAN ACADEMIC PUBLISHER

Cross-Validation with Independent Data: Whenever possible, the correlated parameters should be validated against independent experimental data not used in the fitting process. This helps confirm their predictive capability and robustness. Comprehensive experimental data from established sources, such as the DECHEMA Chemistry Data Series [13] or specific studies on ternary mixtures [12, 14], serve as valuable benchmarks.

By systematically applying these methods, researchers can identify and rectify inconsistencies in LLE correlation parameters, ensuring that published data are not only statistically sound but also thermodynamically reliable.

RESULTS

The application of rigorous assessment methodologies to published LLE correlation parameters has revealed several recurring issues, highlighting the ongoing challenge in ensuring their fidelity. The observations underscore that a good fit to experimental tie-line data alone is insufficient to guarantee the physical validity of the parameters [1, 4].

Key findings from scrutinizing published LLE correlations include:

Prediction of Spurious Miscibility Gaps: A common problem is the prediction of immiscibility regions (miscibility gaps) in composition ranges where the components are known to be fully miscible. This often occurs when correlation parameters are fitted solely to experimental tie-line data without a subsequent phase stability analysis. For instance, parameters for a binary pair within a ternary system that are known to be completely miscible might, when correlated, incorrectly predict a two-phase region [8]. This directly contradicts the physical reality of the system.

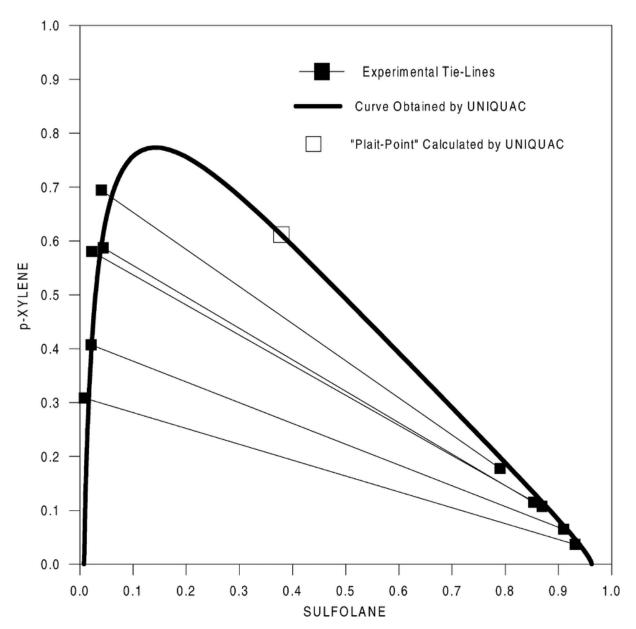


Fig. Experimental tie-lines and binodal curves obtained from measured LLE data, often overlaid with model predictions (e.g. NRTL calculated tie-lines) to evaluate accuracy

Incorrect Topological Features: The topological analysis of the Gibbs free energy surface, as facilitated by tools like GMcal_TieLinesLL [3], frequently reveals inconsistencies. This includes:

Unphysical Spinodal Curves: The spinodal curve, which delineates the limits of stability for a homogeneous phase, might intersect the binodal curve (the actual phase boundary) in an illogical manner, or extend into regions where no immiscibility should exist [9, 11].

Incorrect Plait Point Locations: The plait point, where the two liquid phases become identical, might be predicted at an incorrect composition, or even outside the physically meaningful region of the phase diagram [4]. This directly impacts the understanding of the maximum achievable separation.

Violation of Phase Stability Criteria: The Hessian matrix of the Gibbs free energy might not be positive definite across the entire composition range, indicating that the predicted equilibrium is thermodynamically unstable or metastable, rather than a true stable equilibrium [11].

AMERICAN ACADEMIC PUBLISHER

Parameters Yielding Multiple Solutions: In some cases, a single set of correlation parameters might predict multiple, physically distinct phase diagrams or equilibrium states depending on the initial conditions of the calculation. This ambiguity makes the parameters unreliable for predictive purposes [1].

Over-reliance on Fitting Algorithms Without Physical Constraints: While optimization algorithms like GRG [15, 16] are powerful for parameter fitting, if not adequately constrained by thermodynamic principles, they can converge to solutions that provide excellent statistical fits but are thermodynamically unsound. This highlights a gap in the application of these algorithms in some published works.

Impact on Process Simulation: When these unreliable parameters are used in commercial process simulators (e.g., ASPEN-PLUS [10]), they can lead to erroneous predictions of separation efficiency, solvent requirements, and overall process economics. This underscores the practical implications of such inaccuracies.

Recent publications, however, demonstrate a growing awareness and adherence to these rigorous checks. Studies on reactive extraction [5], separation methods [6], and biofuel systems [7] increasingly emphasize the importance of both experimental accuracy and thermodynamic consistency in their reported LLE data and correlations. This indicates a positive trend towards more reliable published data, driven by the recognition of the issues highlighted by researchers in this field [1, 4, 11].

DISCUSSION

The recurring issues with the reliability of published LLE correlation parameters underscore a critical gap in the traditional peer-review process for phase equilibria data. The prevalent focus on the statistical fit of correlated parameters to experimental data, while important, often overlooks the fundamental thermodynamic consistency that dictates the physical reality of the predicted phase behavior [1, 4]. This oversight can lead to the propagation of flawed parameters, with significant implications for chemical engineering design and research.

One of the primary reasons for these inconsistencies lies in the methodology of parameter fitting. Optimization algorithms, when unguided by thermodynamic constraints, can find local minima that provide excellent statistical fits to experimental tie-line data but correspond to physically unstable or implausible phase diagrams [11]. The complex, non-linear nature of thermodynamic models like NRTL [9] means that multiple sets of parameters might provide a good fit to a limited set of experimental data, but only a subset of these will be thermodynamically consistent across the entire composition range. The necessity of imposing total miscibility for certain binary pairs within a ternary system, for example, is a crucial physical constraint that must be enforced during correlation, as highlighted by Carbonell-Hermida et al. [8]. Failure to do so can lead to the erroneous prediction of immiscibility where none exists.

The implications of using unreliable LLE parameters are far-reaching. In process design, inaccurate phase equilibrium data can lead to undersized or oversized equipment, incorrect solvent selection, and inefficient separation processes. For example, if a simulator, using flawed parameters, predicts a smaller immiscibility region or an incorrect plait point for a system like water + ethanol with a solvent [14], the designed extraction column might fail to achieve the desired separation efficiency. This directly translates to increased operational costs, environmental impact, and potential safety hazards. The development of new, more sustainable processes, such as those involving environmentally friendly eugenol [5] or novel separation techniques for n-hexane and ethanol [6], critically depends on the availability of accurate and reliable LLE data.

The solution to this challenge lies in a more rigorous approach to both the generation and review of LLE correlation parameters. Researchers must adopt a "consistent guide" for drawing phase diagrams by performing comprehensive phase stability analysis [11]. This involves not only fitting the data but also verifying that the

resulting parameters predict a physically meaningful Gibbs free energy surface, free from spurious minima or unstable regions. Tools like GMcal_TieLinesLL [3] are indispensable for this purpose, allowing for the visual and mathematical verification of thermodynamic consistency. Furthermore, the quality of the experimental data itself is paramount. Accurate tie-line data, as exemplified by studies on aqueous solutions of phenol [12] or ternary mixtures of biofuels [7], form the foundation for reliable parameter correlation [13].

For the scientific community, this calls for a more stringent peer-review process. Reviewers of manuscripts presenting LLE correlation parameters should demand evidence of thermodynamic consistency checks, beyond just statistical metrics. This paradigm shift will ensure that published data are not only reproducible but also physically sound, thereby enhancing the overall quality and utility of the chemical engineering literature.

CONCLUSION

The reliability of published Liquid-Liquid Equilibrium (LLE) correlation parameters remains a significant and ongoing challenge within chemical engineering. While the pursuit of accurate experimental data and sophisticated fitting algorithms is commendable, this analysis unequivocally demonstrates that statistical goodness-of-fit alone is an insufficient criterion for validating thermodynamic model parameters. The pervasive issue of thermodynamically inconsistent parameters, which can predict physically impossible phase behavior, underscores a critical gap in the current practices of data generation and dissemination.

The implications of such inaccuracies are profound, directly impacting the design, optimization, and economic viability of industrial separation processes. Using unreliable LLE parameters in process simulators can lead to costly errors, inefficient operations, and a misallocation of resources, hindering the development of sustainable and efficient chemical technologies. The increasing complexity of chemical processes, including those involving novel solvents for reactive extraction or the production of biofuels, further amplifies the need for highly dependable phase equilibrium data.

To address this continuing challenge, a paradigm shift is imperative for both researchers and the broader scientific community. It is crucial for researchers to move beyond mere data fitting and systematically incorporate rigorous thermodynamic consistency checks, particularly phase stability analysis, into their methodology. The topological analysis of Gibbs free energy surfaces, facilitated by specialized software tools, must become a standard practice to ensure that correlated parameters yield physically realistic and stable phase diagrams, including accurate miscibility boundaries and plait point locations. Furthermore, the quality and comprehensiveness of experimental tie-line data remain the bedrock upon which reliable correlations are built.

For journals and peer reviewers, there is a clear call to action: to implement more stringent review criteria that mandate evidence of thermodynamic consistency alongside statistical validation for all published LLE correlation parameters. This proactive approach will serve as a vital safeguard against the propagation of unreliable data. By collectively committing to these enhanced standards, the chemical engineering community can significantly improve the fidelity of published LLE parameters, thereby fostering more accurate process design, accelerating innovation, and ultimately contributing to a more sustainable and efficient chemical industry. The ongoing scrutiny of these parameters is not merely an academic exercise but a practical necessity for the advancement of chemical engineering science.

REFERENCES

- **1.** Marcilla, A.; Reyes-Labarta, J. A.; Olaya, M. M. Should we trust all the published LLE correlation parameters in phase equilibria? Necessity of their assessment prior to publication. Fluid Phase Equilib. 2017, 433, 243–252.
- 2. Treybal, R. E. Liquid Extraction, 2nd ed.; McGraw-Hill: New York, 1963.

AMERICAN ACADEMIC PUBLISHER

- **3.** Labarta, J. A.; Olaya, M. M.; Marcilla, A. GMcal_TieLinesLL: Graphical User Interface (GUI) for Topological Analysis of Calculated GM Surfaces and Curves... Institutional Repository (RUA) 2015–2023. Publicly available online at: http://hdl.handle.net/10045/51725.
- **4.** Marcilla, A.; Olaya, M. M.; Reyes-Labarta, J. A. Ensuring that correlation parameters for liquid-liquid equilibrium produce the right results. J. Chem. Eng. Data 2018, 63, 1133–1134.
- **5.** Saad, M.; Asadzadeh, B.; Uusi-Kyyny, P.; Alopaeus, V. Utilizing environment-friendly eugenol as a diluent with trioctylamine for the reactive extraction of aqueous levulinic acid. Sci. Rep. 2024, 14, 22389.
- **6.** Sander, A.; Petračić, A.; Rogošić, M.; Župan, M.; Frljak, L.; Cvetnić, M. Feasibility of different methods for separating n-hexane and ethanol. Separations 2024, 11, 151.
- 7. Moreira, L. C.; de Araujo, P. C. C.; de P Soares, R.; Follegatti-Romero, L. A. Liquid-liquid equilibrium for 2-methylfuran (biofuel) + alcohols + water systems: Experiments and thermodynamic modeling. Ind. Eng. Chem. Res. 2024, 63, 14417–14429.
- **8.** Carbonell-Hermida, P.; Marcilla, A.; Olaya, M. M. Necessity of imposing total miscibility for certain binary pairs in LLE data correlations. Fluid Phase Equilib. 2021, 538, 112985.
- **9.** Labarta, J. A.; Olaya, M. M.; Marcilla, A. What does the NRTL model look like? Determination of boundaries for different fluid phase equilibrium regions. AIChE J. 2022, 68, e17805.
- 10. ASPEN-PLUS Chemical Process Optimization Software; Aspen Technology Inc: Cambridge, MA.
- **11.** Marcilla, A.; Carbonell-Hermida, P.; Olaya, M. M. Phase stability analysis. A consistent guide for drawing maps for safe travelling through the world of azeotropy and miscibility. Ind. Eng. Chem. Res. 2024, 63, 7926–7938.
- **12.** Gilani, H. G.; Gilani, A. G.; Sangashekan, M. Tie-line data for the aqueous solutions of phenol with organic solvents at T = 298.2 K. J. Chem. Thermodyn. 2013, 58, 142–148.
- **13.** Arlt, W.; Macedo, M. E. A.; Rasmussen, P.; Sorensen, J. M. DECHEMA Chemistry Data Series, Vol. V, Liquid Equilibrium Data Collection; DECHEMA: Frankfurt, Germany.
- **14.** Lin, H. M.; Hong, G. B.; Yeh, C. E.; Lee, M. J. Liquid-liquid equilibria for ternary mixtures of water + ethanol with 1-hexanol, butyl propionate, or ethyl caproate. J. Chem. Eng. Data 2003, 48, 587–590.
- **15.** Abadie, J.; Carpentier, J. Generalization of Wolfe's reduced gradient method for the case of nonlinear constraints in optimization; Academic: New York, 1969.
- **16.** Abadie, J. Application of the GRG algorithm to optimal control problems in integer and nonlinear programming.; North-Holland: Amsterdam, The Netherlands, 1970.