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ABSTRACT 
 

Manufacturing Execution Systems (MES) have evolved significantly over the past few decades, serving as a critical 
link between shop-floor operations and enterprise resource planning. Initially focused on reactive strategies—
offering real-time visibility and control based on immediate conditions—MES have transitioned toward predictive 
capabilities driven by Industry 4.0 technologies. The integration of big data analytics, the Internet of Things (IoT), 
machine learning, and cloud computing has enabled autonomous factories to leverage MES for proactive and 
adaptive decision-making. This paper explores the transformation of MES from reactive to predictive systems, 
detailing the technological enablers, including IoT sensor networks, machine learning algorithms, digital twins, and 
cyber-physical systems. A methodology for designing and implementing a predictive MES architecture is 
presented, supported by empirical findings from a pilot implementation. Results demonstrate improvements in 
production efficiency, reduced downtime, and optimized resource use. Challenges such as data security, 
integration complexities, and workforce training are discussed, alongside future directions involving cognitive MES 
and AI-driven manufacturing. The paper also highlights environmental sustainability benefits, positioning 
predictive MES as a cornerstone of modern autonomous factories. 
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INTRODUCTION 

Since the 1980s, Manufacturing Execution Systems (MES) have played a pivotal role in industrial automation, 

initially developed to provide basic shop-floor control and data logging capabilities [1]. These early systems 

offered real-time visibility into production processes, enabling operators to monitor key performance indicators 

(KPIs) and implement corrective actions as needed [2]. However, pre-Industry 4.0 MES were constrained by 

significant limitations, including siloed data, poor connectivity, and a heavy reliance on manual interventions, 

which restricted their adaptability in dynamic manufacturing environments. With the advent of Industry 4.0, the 

manufacturing landscape has undergone a profound transformation, giving rise to autonomous factories that 

prioritize flexibility, efficiency, and data-driven insights [3]. These advanced facilities demand MES that not only 

react to shop-floor events but also predict and prevent disruptions, marking a significant evolution in system 

capabilities, as illustrated in Figure 1: Evolution Timeline of MES. 
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Figure 1 - Evolution Timeline of MES 

 

The economic case for transitioning to predictive MES is compelling. According to a 2023 Deloitte report, predictive 

maintenance enabled by advanced MES can reduce operational costs by 10-15% and increase throughput by up to 

20% in smart factories [4]. Such benefits are critical for manufacturers striving to remain competitive amid rising 

operational costs and complex global supply chains. While traditional MES excel at orchestrating real-time 

operations, they often lack the foresight to anticipate critical issues such as machine failures or production 

bottlenecks [5]. This limitation underscores a pressing need for predictive—and ultimately prescriptive—MES 

frameworks that leverage analytics and machine learning to enhance decision-making in autonomous factories. 

Despite advancements in Industry 4.0 technologies, a significant research gap persists in the design, 

implementation, and validation of scalable predictive MES architectures tailored for autonomous manufacturing 

environments [6]. Conventional MES effectively manages ongoing operations but falls short in preventing 

disruptions before they occur, leaving manufacturers seeking predictive capabilities to forecast maintenance needs, 

quality deviations, and capacity constraints [5]. This paper addresses this gap by exploring the technological and 

methodological shifts necessary for adopting predictive MES. Specifically, it aims to analyze the transformation of 

MES through technology adoption and capability evolution, present a methodology for developing a predictive MES 

framework encompassing data collection, model training, and system integration, demonstrate how predictive 

insights enhance decision-making in autonomous factories, and discuss real-world challenges, sustainability 

impacts, and future directions for predictive MES research and deployment. By outlining best practices, essential 

technologies, and emerging trends, this study seeks to guide researchers and industry practitioners toward 

advancing predictive MES in the era of autonomous manufacturing. 

 

METHODOLOGY 

To investigate the evolution of MES in autonomous factories, a mixed-method approach was employed, combining 

literature review, case studies, technical analysis, and a pilot implementation. Stakeholder involvement, including 

operators, data scientists, and IT teams, ensured practical relevance. 
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Materials and Data Sources 

This study utilized a diverse range of materials and data sources to investigate the evolution of MES in autonomous 

factories. A comprehensive literature review was conducted, encompassing peer-reviewed journals, conference 

proceedings, and industry white papers focused on MES, Industry 4.0, predictive analytics, and autonomous 

manufacturing [3,5,6]. Additionally, industrial case studies were analyzed, drawing on examples from 

manufacturing plants that have adopted predictive MES, sourced from open-access datasets and industry reports. 

Technical documents, including system specifications from leading MES providers such as Siemens and SAP, as well 

as IoT solutions from companies like Bosch and IBM, were also consulted to understand the technological 

landscape. Furthermore, real-time IoT data from a small-scale autonomous manufacturing cell, including sensor 

readings and production logs, were collected as part of a pilot implementation to provide empirical insights. To 

address data privacy concerns, sensitive information was anonymized, and secure protocols, such as TLS encryption, 

were employed for IoT data transmission, ensuring compliance with GDPR and industrial cybersecurity standards. 

 

METHODS AND PROCEDURES 

Requirement Analysis: Identified needs for predictive MES, including real-time data ingestion, analytic capabilities, 

and integration with protocols like OPC UA and MQTT. 

System Architecture Design: The system architecture for the predictive MES was designed using a layered approach 

to ensure seamless integration and functionality, as illustrated in (Fig 2). At the foundation, the IoT-based sensing 

layer employs sensors, such as Bosch temperature and Honeywell vibration sensors, to collect shop-floor data at 1-

second intervals. This data is then processed by the data management layer, where edge devices perform 

preprocessing tasks like noise reduction before storing the data in either cloud or on-premise data lakes. The 

analytics engine, utilizing machine learning models from platforms like TensorFlow and Scikit-learn, handles tasks 

such as regression, classification, and anomaly detection to generate predictive insights. These insights are fed into 

the MES core, which orchestrates production activities, tracks orders, and translates analytical outputs into 

actionable decisions. Finally, the enterprise integration layer connects the MES to higher-level systems, including 

ERP, PLM, and supply chain systems, ensuring a unified operational ecosystem. 
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Data Management Layer, Edge Preprocessing (Noise Reduction), Cloud/On Premise Data Lakes

Servers

IoT-Based Sensing Layer, Sensors (Bosch Temperature, Honeywell Vibration), Data Collection at 

1-Second Interval

 
Figure 2 - Predictive MES Architecture 

 

Machine Learning Model Selection: Machine learning models were selected based on the predictive tasks required 

for the MES framework, balancing accuracy, interpretability, and computational efficiency. For predictive 

maintenance, random forests and anomaly detection were utilized. Random forests classified equipment health 

states using IoT sensor data, leveraging their ability to handle high-dimensional datasets effectively. Anomaly 

detection, using isolation forests, identified unusual patterns signaling potential failures, focusing on rare events 

like sudden equipment issues. For demand forecasting, time-series models were applied: ARIMA for short-term 

forecasts, chosen for its simplicity with stationary data, and LSTM networks for longer-term predictions, selected 

for their ability to capture complex temporal patterns, though requiring NVIDIA GPUs for training. Model 

interpretability was prioritized, with random forests and ARIMA offering clearer insights for operator trust, while 

hyperparameter tuning ensured robust performance. To address data drift, models supported online learning with 

periodic retraining, maintaining prediction reliability in a dynamic factory environment. 

 

Data Analysis Techniques: The data analysis techniques employed in this study encompassed a multi-faceted 

approach to derive actionable insights from the collected IoT data. Descriptive statistics were used to summarize 

production metrics, such as cycle times and error rates, providing a foundational understanding of operational 

performance. Predictive modeling was then applied to identify failure patterns, leveraging historical production and 
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maintenance data to detect trends and anomalies that could indicate potential disruptions. The models’ reliability 

was validated using metrics like root mean square error (RMSE), mean absolute percentage error (MAPE), and F1-

score, ensuring the predictions were accurate and suitable for real-time decision-making in the autonomous factory 

environment. 

 

Implementation: A pilot implementation was conducted in a small-scale autonomous manufacturing cell to assess 

the feasibility and performance of the predictive MES framework. The manufacturing cell, equipped with IoT 

sensors and integrated production equipment, served as a controlled environment to test the system’s ability to 

collect real-time data, generate predictive insights, and execute automated decisions. The pilot focused on key 

functionalities, such as predictive maintenance and production scheduling, to evaluate the system’s impact on 

operational efficiency and its scalability for larger deployments. Data from the pilot, including sensor readings and 

production logs, provided empirical evidence to refine the MES architecture and ensure its alignment with the 

dynamic requirements of autonomous factories. 

 

Data Analysis Environment 

The data analysis environment was configured to support the computational and connectivity demands of the 

predictive MES framework. The hardware setup included Intel Xeon servers with 64 GB of RAM and NVIDIA GPUs, 

providing the necessary processing power for accelerated model training and real-time analytics. The software stack 

comprised Python 3.x as the primary programming environment, with TensorFlow and Scikit-learn for developing 

machine learning models, Apache Kafka for real-time data streaming, and MongoDB for no-SQL data storage, 

ensuring efficient data handling and analysis. Connectivity was facilitated by industrial IoT gateways supporting OPC 

UA, MQTT, and industrial Ethernet protocols, enabling seamless and low-latency data transfer between the shop 

floor and the analytics platform. 

 

Simulation Modeling for Predictive MES 

To validate the predictive MES architecture prior to full-scale deployment, simulation modeling was employed, as 

illustrated in (Fig.3). Discrete Event Simulation (DES) and Agent-Based Modeling (ABM) were utilized to replicate 

shop-floor dynamics, using tools such as AnyLogic and Simio. Virtual models were developed by incorporating IoT 

data to simulate machine interactions, material flows, and operator behaviors under various scenarios, including 

machine failures and demand spikes. The simulation results demonstrated a 25% improvement in scheduling 

accuracy compared to traditional MES, confirming the architecture’s scalability and robustness. This validation step 

not only reduced implementation risks but also enhanced stakeholder confidence in the predictive MES framework. 
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Figure 3 - Simulation Workflow 

 

 

 

 

RESULTS AND DISCUSSION 
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Transition from Reactive to Predictive MES 

Reactive MES responds to events post-occurrence, relying on real-time data to address disruptions [2]. Predictive 

MES, however, uses analytics to anticipate issues, improving overall equipment effectiveness (OEE). Table 1 

compares the two paradigms 

 

Aspect Reactive MES Predictive MES 

Data Processing Real-Time, Event-driven Historical + Real-Time, Machine 

Learning 

Decision-Making Operator-driven Corrective Actions Automated, Proactive Adjustments 

Technology Focus PLC/SCADA, basic MES IoT, Cloud Analytics, Digital Twins 

Outcome Reduced Downtime (Reactive) Minimized Downtime via Early 

Detection 
Table 1. Comparison of Reactive MES vs. Predictive MES 

 

Key Findings from Pilot Implementation  

The pilot implementation of the predictive MES framework yielded significant improvements across several 

operational metrics, as illustrated in (Fig.4). Predictive maintenance, enhanced by anomaly detection, enabled 

preemptive scheduling that reduced machine breakdowns by 35%, thereby increasing uptime. Real-time alerts 

facilitated timely corrections of parameters such as temperature, cutting scrap rates by 20%. Additionally, 

forecasting models improved production planning, reducing setup times by 15% through more accurate scheduling. 

These results align with benchmarks from a 2022 Siemens study, which reported up-time gains of 30-40% in 

predictive MES deployments, confirming the effectiveness of the proposed approach [7]. 

 

 
 

Figure 4 - Predictive MES Impact Metrics 
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Correlation with Previous Research 
The shift to predictive MES reflects Industry 4.0’s emphasis on data-driven manufacturing [3]. Prior studies note 
productivity gains from IoT and machine learning in predictive maintenance [8]. This study emphasizes system-level 
integration, ensuring predictive models directly enhance MES functionalities, unlike isolated analytics tools [5]. 
 
 
Practical and Theoretical Implications 
Practically, predictive MES delivers substantial cost savings and operational agility by enabling autonomous, self-
correcting production lines [9]. Through the integration of real-time IoT data and predictive analytics, the system 
can proactively identify potential issues, such as equipment failures or process deviations, and automatically adjust 
parameters like temperature or speed to prevent disruptions. For instance, the pilot implementation demonstrated 
a 35% reduction in breakdowns and a 20% decrease in scrap rates, directly translating to lower maintenance costs 
and material waste. This autonomy also enhances agility, allowing production lines to quickly adapt to fluctuating 
demand or supply chain disruptions without manual intervention, thereby improving throughput and reducing lead 
times. Theoretically, the evolution toward a next-generation MES hinges on the adoption of advanced technologies 
such as continuous learning, digital twins, and cognitive computing to dynamically adapt to operational changes 
[10]. Continuous learning enables the MES to refine its predictive models over time by incorporating new data, 
ensuring sustained accuracy in dynamic factory environments where machine behavior or production patterns may 
shift. Digital twins provide a virtual replica of the shop floor, allowing for real-time simulation and optimization of 
processes, such as testing the impact of a new production schedule without risking actual operations. Cognitive 
computing further enhances this adaptability by introducing AI-driven decision-making capabilities, enabling the 
MES to autonomously handle complex scenarios, like optimizing multi-site production or responding to unexpected 
market shifts, with human-like reasoning. Together, these theoretical advancements lay the groundwork for a fully 
autonomous, intelligent manufacturing ecosystem capable of self-optimization and resilience. 
 
 
Challenges and Limitations 
The implementation of predictive MES, while promising, encounters several challenges and limitations that must 
be addressed for broader adoption, as illustrated in the scalable architecture depicted in (Fig.5). First, data quality 
and integration pose significant hurdles, as heterogeneous sensors and legacy systems often complicate efforts to 
achieve consistency across data streams, leading to potential inaccuracies in predictive analytics. Second, scalability 
remains a concern; although the pilot demonstrated success in a single manufacturing cell, extending this to multi-
site factories requires robust architectures. For instance, hybrid edge-cloud systems, tested in a multi-site 
automotive plant, reduced latency by 10%, offering a scalable solution by enabling real-time local decisions and 
periodic cloud updates for global insights. Third, security and privacy are critical, as IoT data flows necessitate 
advanced encryption and authentication measures to protect sensitive information and comply with regulations 
[11]. Finally, workforce training presents a resource-intensive challenge, as the adoption of advanced analytics 
demands upskilling to ensure operators can effectively leverage the system’s insights, requiring significant 
investment in training programs. 
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Figure 5 - Multi-Site Scalability Framework 

 
Environmental Sustainability Impacts 
Predictive MES enhances sustainability by optimizing operations. The pilot reduced energy consumption by 12% 
through efficient machine use and cut scrap rates by 20%, minimizing waste. These align with a 2024 McKinsey 
study reporting 15% emission reductions in smart factories [12]. Predictive MES thus supports economic and 
environmental goals, critical for regulatory compliance and societal expectations. 
 

CONCLUSION 

This study illustrates how predictive MES transforms autonomous factories by anticipating disruptions, improving 
efficiency, and supporting sustainability, as evidenced by the pilot implementation, which achieved a 35% uptime 
increase, 20% scrap reduction, 15% planning improvement, and 12% energy savings. These gains are enabled by 
technologies such as IoT, machine learning, and cloud computing, though challenges like data integration, 
scalability, security, and workforce training necessitate strategic solutions to ensure broader adoption. Future 
research should explore cognitive MES with AI agents for self-optimization, digital twins for real-time process 
simulations, and edge computing to enable localized decision-making in large-scale factories, addressing scalability 
and latency concerns. To guide this evolution, a phased adoption roadmap is proposed, as shown in (Fig.6), outlining 
short-term (1-3 years) pilots focusing on IoT integration and basic analytics, mid-term (3-7 years) multi-site scaling 
incorporating digital twins, and long-term (7-10 years) development of cognitive MES with robust cybersecurity 
standards and comprehensive workforce training programs. Industry-academia collaboration will be essential to 
standardize protocols, overcome barriers, and ensure predictive MES drives the advancement of autonomous 
manufacturing. 
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Figure 6 - Predictive MES Adoption Roadmap 
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