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ABSTRACT

Cost overruns remain one of the most pressing challenges in large-scale infrastructure projects. Telecom fiber
rollouts, transportation systems, and energy networks often experience escalating budgets that reduce profitability,
delay schedules, and undermine stakeholder confidence. Traditional forecasting methods—such as expert
judgment and deterministic models—tend to be reactive and rarely anticipate risks early enough for corrective
action. This research introduces a predictive analytics framework that leverages historical project data to forecast
potential budget overruns and provide early-warning signals for financial decision-makers.

Budgetary performance is shaped by technical, organizational, and external factors including scope changes, terrain
complexity, vendor delays, and shocks such as weather or regulatory constraints. Conventional cost-control systems
often fail to account for the nonlinear interactions among these variables. By applying machine learning—based
predictive modeling, this study seeks to uncover hidden patterns in historical datasets and enhance the precision
of overrun forecasts.

Methodologically, the research compares regression and time-series approaches with advanced algorithms such as
Random Forest, Gradient Boosting, and Support Vector Machines. Anticipated results suggest that machine learning
models can reduce forecasting error by 15-25% compared to traditional methods, while also providing classification
metrics to better identify projects at risk of escalation.

The contributions are threefold: (1) identifying cost drivers most strongly associated with overruns; (2)
demonstrating the relative performance gains of machine learning compared with traditional approaches; and (3)
outlining a practical framework for embedding predictive outputs into business intelligence dashboards used in
financial planning and analysis. By focusing on infrastructure finance, particularly telecom rollouts where terrain-
driven costs create high uncertainty, the study emphasizes how predictive analytics can strengthen financial
governance, mitigate overruns, and support more reliable decision-making in capital-intensive projects.

KEYWORDS

Cost overruns; predictive analytics; machine learning (ML); infrastructure finance; telecom; business intelligence;
financial planning.

1. Introduction

Large-scale infrastructure projects represent some of the most complex and capital-intensive undertakings in

modern economies. They involve extended timelines, multiple stakeholders, and significant financial commitments.
|
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Despite advances in project management practices and financial governance, cost overruns remain a persistent
problem across sectors such as telecommunications, transportation, and energy. Studies consistently show that a
majority of megaprojects exceed their original cost estimates, in some cases by more than 50 percent. These
overruns reduce profitability, delay delivery, erode investor confidence, and damage the reputations of both
contractors and owners. In telecom fiber rollouts—where deployment speed is closely tied to market
competitiveness—budget escalations can have particularly severe financial and strategic consequences.

Against this backdrop, this study is guided by three central objectives:
1. To identify and quantify the key drivers of cost overruns across technical, organizational, and external domains.

2. To compare the predictive performance of traditional methods (e.g., regression and time-series models) against
advanced machine learning approaches such as Random Forest, Gradient Boosting, and Support Vector Machines.

3. To outline a practical integration framework that embeds predictive models into business intelligence dashboards
for proactive financial planning and analysis (FP&A).

By placing the research aims early, the paper clarifies its scope: developing, testing, and evaluating a predictive
modeling framework for forecasting budget overruns in infrastructure projects using historical data.

Traditional approaches to cost forecasting—such as expert judgment, deterministic models, or static variance
analysis—have proven inadequate in preventing financial slippage. These methods rely on assumptions that rarely
reflect the uncertainty and complexity of large projects. They are also reactive: cost risks are identified only after
significant deviations occur. For example, tracking expenditures against baselines can reveal overspending, but by
that stage opportunities for corrective action are limited. What is needed is a shift from reactive monitoring to
proactive prediction, where risks are identified early enough to inform strategic and financial decisions.

Recent advances in data analytics, machine learning (ML), and business intelligence (Bl) platforms create
opportunities to transform cost forecasting practices. Infrastructure projects generate vast amounts of data—from
procurement cycles and vendor performance records to labor productivity and geospatial terrain conditions. When
structured and analyzed effectively, this historical data can reveal correlations that traditional models often miss.
Predictive analytics, by learning from prior project outcomes, offers the potential to forecast overruns with greater
accuracy and earlier warnings.

The promise of predictive analytics in infrastructure finance rests on three considerations. First, cost overruns are
rarely attributable to a single factor; rather, they emerge from complex, nonlinear interactions among technical,
organizational, and external drivers. Variables such as terrain complexity, weather disruptions, procurement delays,
and scope changes interact in ways that traditional linear models struggle to capture. ML algorithms, by contrast,
are well-suited to modeling such interactions. Second, predictive analytics can move beyond generic benchmarks
by tailoring forecasts to the characteristics of a given project portfolio. For instance, a model trained on historical
telecom rollout data could distinguish between aerial and underground installations, incorporating terrain-driven
risk into its predictions. Third, predictive outputs can now be integrated into Bl dashboards such as Power Bl or
Tableau, placing model insights directly into the decision-making environments of financial planners and project
managers.

This study builds upon prior scholarship on project forecasting and cost overruns while addressing notable gaps.
Seminal work by Flyvbjerg and colleagues has linked systematic underestimation to optimism bias and strategic
misrepresentation. Other studies have tested statistical and ML-based forecasting methods in construction contexts
with encouraging results. Yet relatively little attention has been paid to designing practical, data-driven frameworks
that can be embedded into FP&A workflows for real-time decision support—particularly in telecom and linear
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infrastructure sectors.

By focusing on telecom fiber deployments and related infrastructure projects, this research contributes both to the
academic literature and to practical project finance management. The findings are expected to demonstrate the
superior accuracy of ML models compared to traditional methods, while also showing their applicability to FP&A
professionals, project managers, and executives seeking stronger financial discipline.

The remainder of this paper is structured as follows. Section 2 reviews the existing literature on cost overruns,
forecasting biases, and predictive modeling approaches. Section 3 describes the methodology, including data
collection, feature engineering, and model development. Section 4 presents results, comparing model performance
across algorithms. Section 5 discusses implications for project finance and FP&A integration. Section 6 concludes
with recommendations, study limitations, and directions for future research.

2. Literature review:
2.1 Cost Overruns in Infrastructure Projects

Cost overruns have long been recognized as a defining challenge in large-scale infrastructure delivery. Early
empirical research, such as Flyvbjerg et al. (2003), revealed that megaprojects across transport, energy, and urban
development frequently exceed their original budgets—sometimes by more than 50 percent. These overruns are
rarely isolated incidents but reflect systemic issues tied to project complexity, extended timelines, and the
involvement of multiple stakeholders. Later studies reinforced that the problem is global in nature, with similar
outcomes observed in both developed and emerging economies (Cantarelli et al., 2010).

The persistence of overruns has attracted scholarly attention for decades. Research has shown that initial cost
estimates often fail to capture the full range of risks, whether due to inadequate data, overly optimistic
assumptions, or deliberate underestimation. As a result, infrastructure projects frequently experience cost
escalations that erode profitability, undermine investor confidence, and delay service delivery. In sectors such as
transportation, this has led to public scrutiny and calls for more transparent governance frameworks.

Despite extensive literature on construction and transport, relatively little emphasis has been placed on
telecommunications infrastructure, even though similar patterns are evident. Fiber rollout programs, for instance,
often suffer from budget escalation due to permitting bottlenecks, vendor-related delays, and geospatial challenges
such as rocky terrain or dense urban conditions. Like highways or rail networks, telecom projects are linear, capital-
intensive, and subject to external shocks. However, they differ in the pace at which overruns impact strategic
outcomes, since deployment speed directly shapes competitive advantage in digital markets.

This historical context highlights that while the drivers of overruns are broadly understood, sector-specific insights
into telecom finance remain limited. Addressing this gap is critical for developing predictive frameworks that reflect
the realities of modern digital infrastructure.

2.2 Causes of Cost Overruns

Scholars typically explain cost overruns through three broad categories: technical, psychological, and political-
economic factors (Flyvbjerg et al., 2003; Love et al., 2016). Together, these frameworks demonstrate that overruns
emerge from a combination of unforeseen risks, human behavior, and institutional incentives.

2.2.1 Technical Causes.

Technical explanations focus on incomplete designs, inadequate risk assessment, and unforeseen site conditions.
Morris (1990) highlighted how design errors and scope gaps often force costly mid-project adjustments. Similarly,

Cantarelli et al. (2010) found that construction projects frequently encounter ground conditions or utility conflicts
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not anticipated in surveys. In telecom rollouts, technical risks manifest in ways such as hitting unexpected
underground utilities, encountering rock-heavy terrain, or facing higher-than-expected restoration costs in urban
corridors. These challenges mirror those in transport but are exacerbated by the linear, distributed nature of fiber
networks, where each additional mile increases exposure to local variability.

2.2.2 Psychological Causes.

Psychological explanations emphasize cognitive biases. Kahneman and Tversky’s (1979) planning fallacy shows that
people systematically underestimate risks and overestimate efficiency. Optimism bias, as later discussed by Lovallo
and Kahneman (2003), leads project promoters to assume best-case scenarios, producing unrealistically low cost
estimates. Even seasoned professionals are vulnerable. In telecom finance, this bias may appear in assumptions
that permitting will move smoothly or that contractors will meet aggressive timelines, despite past evidence to the
contrary. Such misplaced optimism results in cost forecasts that are misaligned with operational realities.

2.2.3 Political-Economic Causes.

A third category highlights strategic misrepresentation. Flyvbjerg et al. (2002) argued that promoters sometimes
deliberately understate costs and overstate benefits to win political approval or secure funding. Cantarelli et al.
(2010) distinguish between unintentional error and deliberate “lies” in cost estimation. While these dynamics are
well documented in publicly funded rail and road projects, they also apply to telecom. Competitive bidding,
regulatory oversight, and the race for market share may incentivize underreporting costs on paper, with the true
expenditures surfacing only after rollout begins.

2.2.4 Interaction of Causes.

In practice, these categories overlap. For example, optimism bias may lead to underestimating permitting delays
(psychological), while unforeseen underground conditions add technical risk, and competitive pressures incentivize
cost understatement (political-economic). This layering makes overruns systemic rather than accidental (Love et
al., 2016).

2.2.5 Mitigation Efforts.

Scholars have suggested several remedies. Reference class forecasting (Flyvbjerg, 2008) improves estimates by
benchmarking against historical project outcomes, adjusting for optimism bias. Risk-based approaches incorporate
probability distributions but depend heavily on data quality (Ahiaga-Dagbui & Smith, 2014). Despite these advances,
few frameworks explicitly address telecom-specific challenges, where permitting, terrain-driven costs, and vendor
performance play outsized roles.

Summary

The causes of cost overruns are well studied in transport and construction but underexplored in telecom. While
technical, psychological, and political-economic explanations apply broadly, sector-specific risks—such as
distributed project footprints and regulatory bottlenecks—require tailored approaches. Predictive analytics has the
potential to bridge this gap by integrating diverse factors into proactive cost-control frameworks.

2.3 Traditional Forecasting Approaches

Traditional forecasting methods remain widely used in project finance, largely because of their transparency,
familiarity, and compliance with industry standards. However, their limitations are well documented, especially in
dynamic sectors like telecommunications, where cost drivers are diverse and highly context-dependent.

2.3.1 Deterministic Estimation Methods.
]
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Deterministic techniques such as bottom-up and parametric estimation are among the oldest and most prevalent.
Bottom-up estimation aggregates detailed costs at the work-package level, while parametric models apply
statistical relationships between project attributes and costs (PMI, 2017). Christensen et al. (1995) note that these
approaches are useful during early budgeting stages because of their traceability. Yet they are highly sensitive to
assumptions. In telecom fiber rollouts, for instance, parametric models may assume a uniform per-mile installation
cost, overlooking how terrain type, population density, or municipal permitting significantly alter actual
expenditures. This simplification often results in underestimated budgets that fail to capture local realities.

2.3.2 Regression and Time-Series Models.

Regression has long been employed to identify cost predictors, with Odeck (2004) showing project size and duration
as key determinants of overruns in Norwegian road projects. Time-series models such as ARIMA have also been
used to forecast expenditure trends (Hyari & Kandil, 2009). While these methods capture linear relationships and
temporal patterns, they struggle with nonlinear effects and sudden shocks, such as vendor delays or regulatory
interventions. For telecom, where rollout speed can be disrupted by unexpected permitting constraints or utility
conflicts, reliance on past patterns proves insufficient.

2.3.3 Variance Analysis and Earned Value Management.

Variance analysis and earned value management (EVM) remain standard for monitoring financial performance.
EVM integrates scope, cost, and schedule metrics into indices such as the Cost Performance Index (CPI) and is often
mandated in government contracts (Fleming & Koppelman, 2010). Although EVM provides diagnostic insights, its
predictive power is limited. Batselier and Vanhoucke (2015) found that EVM forecasts lose accuracy as project
uncertainty grows. In telecom rollouts, this means that while EVM can flag deviations after they occur, it rarely
anticipates overruns linked to delayed right-of-way approvals or shifting material costs.

2.3.4 Limitations in the Telecom Context.

Across these approaches, three limitations are evident. First, they rely on linear simplifications that fail to capture
the interaction of multiple drivers—such as how permitting delays compound with vendor inefficiencies and
weather impacts in fiber rollouts. Second, they are largely reactive, highlighting deviations only after overruns have
already materialized, leaving little room for timely intervention. Third, they lack sensitivity to sector-specific
conditions. For example, deterministic models treat costs per unit of fiber as uniform, regression models overlook
permitting volatility, and EVM cannot adapt to the nonlinear escalation triggered by multiple scope changes.

Summary

Traditional forecasting tools provide structure and interpretability but are inadequate for managing the uncertainty
and complexity of modern infrastructure, particularly telecom deployments. They diagnose problems rather than
predict them, and they generalize rather than adapt to sector-specific realities. This underscores the need for
predictive analytics frameworks capable of incorporating diverse variables and learning from historical telecom data
to generate early-warning indicators.

2.4 Predictive Analytics and Machine Learning in Cost Forecasting

The limitations of traditional forecasting approaches have prompted increasing interest in predictive analytics and
machine learning (ML) for cost estimation and overrun prediction. Unlike deterministic or regression-based
methods, ML models can capture nonlinear relationships, handle large and complex datasets, and adapt to project-
specific contexts (Ahiaga-Dagbui & Smith, 2014). This makes them particularly suitable for infrastructure projects,
where multiple interdependent factors—ranging from technical risks to external shocks—shape financial
performance.

https://www.academicpublishers.org/journals/index.php/ijdsml 197



AMERICAN ACADEMIC PUBLISHER

2.4.1 Adoption of Predictive Analytics in Project Forecasting

Predictive analytics refers broadly to the use of statistical and computational methods to forecast future outcomes
based on historical data patterns. In project finance, predictive analytics has been used to model cost growth,
schedule slippages, and risk likelihoods (Love et al., 2016). The ability to move from reactive diagnostics (e.g.,
variance analysis) to proactive prediction represents a paradigm shift in financial planning and analysis (FP&A).

For instance, Kim et al. (2009) applied artificial neural networks (ANNs) to forecast cost deviations in highway
projects, demonstrating improved accuracy compared to regression models. Similarly, Cheng et al. (2010) used data
mining techniques to analyze change orders in construction, showing that predictive approaches can anticipate
overruns before they occur. These early studies laid the groundwork for more sophisticated ML applications.

2.4.2 Machine Learning Models in Cost Overrun Prediction
ML techniques differ in how they identify patterns and make predictions:

* Regression Trees and Random Forests: Decision tree—based models can capture nonlinear effects and interactions
among variables such as project size, duration, and procurement cycle length. Random Forests, an ensemble of
decision trees, have been shown to outperform single regression models in predicting cost escalation (Aung et al.,
2023).

¢ Support Vector Machines (SVMs): Coffie (2023) applied SVMs to infrastructure projects and demonstrated strong
predictive performance, particularly in binary classification tasks such as predicting whether a project would
overrun or not.

¢ Gradient Boosting and XGBoost: Ensemble boosting algorithms incrementally improve model accuracy by focusing
on misclassified instances. Uddin et al. (2022) compared Gradient Boosting with logistic regression, KNN, and
Random Forest, finding Gradient Boosting to be among the most accurate for cost overrun classification.

e Artificial Neural Networks (ANNs): ANNs are capable of modeling complex, nonlinear patterns in project data.
Hyari and Kandil (2009) reported that ANNs outperformed regression in predicting cost deviations in U.S. highway
projects. However, ANNs are sometimes criticized for being “black-box” models, offering limited interpretability to
project stakeholders.

¢ Hybrid Approaches: Recent research has also explored combining ML with simulation techniques. For example,
Turkyilmaz (2024) proposed a hybrid risk score—based ML framework for classifying projects into overrun severity
categories, improving interpretability for decision-makers.

2.4.3 Key Findings from Empirical Studies
Across empirical studies, several findings emerge:

1. ML models generally outperform traditional methods in predictive accuracy, especially in high uncertainty
contexts (Aung et al., 2023; Uddin et al., 2022).

2. Feature importance analysis reveals critical drivers of cost overruns, including project size, implementation
duration, scope change frequency, and geospatial conditions (Cheng et al., 2010).

3. Data availability and quality remain bottlenecks: infrastructure datasets are often fragmented, project-specific,
or confidential, which limits model generalizability (Love et al., 2016).

4. Interpretability is a major concern: while models like Random Forests and Gradient Boosting deliver high
accuracy, practitioners often prefer models that can explain predictions clearly, particularly for financial governance
(Coffie, 2023).
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2.4.4 Applications in Infrastructure and Telecom

Most published ML applications have focused on construction and transportation projects, with relatively few
applied directly to telecom or linear infrastructure. However, the methodological insights are transferable. For
example, geospatial features such as terrain slope, permitting duration, and vendor delays—important in fiber
rollouts—are analogous to geotechnical or regulatory variables in transportation projects. This suggests that
predictive analytics can be adapted for telecom finance with appropriate feature engineering.

In practice, predictive models can be integrated into business intelligence (BI) tools such as Power BI, Tableau, or
custom dashboards. By embedding ML predictions into FP&A workflows, financial analysts and executives can
receive early-warning signals about potential overruns, enabling timely corrective action. This integration bridges
the gap between research models and operational decision-making.

2.4.5 Research Gaps
Despite encouraging results, three key gaps remain:

1. Sector-Specific Studies: Telecom rollouts and other linear infrastructure projects are underrepresented in the ML
cost forecasting literature.

2. Operationalization: Most studies stop at demonstrating model accuracy without exploring deployment into
BI/FP&A systems for real-time use.

3. Comparative Evaluation: Few studies systematically benchmark multiple ML models against traditional
forecasting techniques on the same dataset.

Addressing these gaps is crucial for moving predictive analytics from experimental use toward practical tools for
financial governance. This study contributes by applying predictive models to infrastructure project datasets,
comparing their performance, and outlining how outputs can be integrated into Bl platforms.

2.5 Data-Driven Drivers of Cost Overruns

Cost overruns are rarely explained by a single factor. Instead, they emerge from the interaction of multiple drivers
spanning technical, organizational, and external domains. Identifying and quantifying these drivers is crucial for
predictive modeling, since variable selection and feature engineering directly influence forecasting accuracy.

2.5.1 Project Size and Duration.

Project size and length of implementation are consistently among the strongest predictors of overruns. Flyvbjerg et
al. (2003) showed that larger and longer projects face higher risks due to cumulative uncertainties, and Eliasson
(2025) confirmed that extended timelines expose projects to inflation, labor disputes, and political risks. In telecom
rollouts, longer projects encounter escalating risks tied to material price volatility, shifting municipal regulations,
and evolving customer demand. A two-year fiber deployment, for example, is far more exposed to policy changes
than a six-month project.

2.5.2 Scope Changes and Change Orders.

Frequent scope changes are another recurring driver. Studies in construction contexts (Love et al., 2018)
demonstrate how incremental design changes accumulate into significant budget impacts. Telecom rollouts are
equally vulnerable: rerouting fiber to avoid unexpected underground utilities, expanding service areas under
political pressure, or redesigning trenching layouts due to local objections often trigger cascading overruns. Unlike
transport megaprojects, which may face a limited number of large design shifts, telecom projects frequently suffer
from numerous smaller adjustments spread across distributed geographies.

|
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2.5.3 Procurement and Vendor Performance.

Procurement inefficiencies and vendor-related delays are major cost drivers. Aung et al. (2023) found that purchase
order and invoice cycle times strongly predict overruns in construction. In telecom, vendor performance is
particularly critical because deployments rely on subcontractors for trenching, splicing, and restoration. Delays in
one segment can stall entire rollout phases, inflating costs. Vendor lock-in or disputes over unit pricing exacerbate
these risks.

2.5.4 Geospatial and Environmental Conditions.

Physical conditions significantly influence costs. Sovacool et al. (2014) demonstrated that geotechnical complexity
is a strong predictor of overruns in energy projects. In telecom fiber rollouts, terrain features—such as rocky soil,
high water tables, or dense urban congestion—make underground construction more costly and time-intensive.
Similarly, aerial deployments may encounter weather-related damage risks or municipal restrictions on pole access.
These conditions are uniquely important to telecom and highlight the inadequacy of generic parametric cost models
that assume uniform per-mile installation costs.

2.5.5 External and Institutional Factors.

External drivers such as permitting, regulatory approvals, and macroeconomic variables play a decisive role.
Cantarelli et al. (2010) highlighted institutional pressures in public projects, while the UK’s National Audit Office
(2019) pointed to the impact of weak governance on cost outcomes. In telecom finance, permitting delays and
right-of-way negotiations can derail timelines more than any technical factor. Inflation and exchange rate
fluctuations further add financial uncertainty, especially when equipment is procured globally.

2.5.6 Insights from ML-Based Feature Analysis.

Machine learning studies confirm that data-driven feature importance analysis can reveal nuanced drivers.
Turkyilmaz (2024) showed that risk scores derived from vendor history and geography improved predictions. Aung
et al. (2023) found that engineered features such as cumulative spend curve slopes were highly predictive. Applied
to telecom, similar engineered features—such as permitting cycle length, aerial-to-underground ratios, or
restoration cost indices—could capture sector-specific dynamics that traditional models overlook.

Summary

The literature converges on several key drivers of overruns: project size and duration, scope volatility, procurement
inefficiencies, geospatial complexity, and external approvals. Yet telecom-specific drivers—such as aerial vs.
underground deployment choices, distributed permitting processes, and subcontractor variability—remain
underexplored. Predictive models that explicitly incorporate these factors could substantially improve forecasting
accuracy and offer more practical insights for financial governance in telecom rollouts.

2.6 Integration with Business Intelligence Tools

Predictive models generate value only when their insights can be incorporated into decision-making processes.
Business Intelligence (BI) tools such as Power BI, Tableau, and Qlik have become central to financial planning and
analysis (FP&A), offering dashboards that integrate cost, schedule, and risk metrics. However, most existing Bl
implementations remain descriptive, focusing on variance analysis and static reporting rather than predictive
insights (Popovic et al., 2012). For sectors like telecommunications—where rollout speed and budget discipline
directly shape competitive advantage—the absence of predictive integration represents a significant missed
opportunity.

2.6.1 Traditional Bl Applications.
|
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In many organizations, Bl dashboards aggregate data from procurement, scheduling, and finance systems to
produce performance metrics. These tools are valuable for transparency, but they primarily answer what has
happened rather than what is likely to happen. Variance dashboards, for example, highlight budget deviations only
after they occur. For telecom rollouts, this reactive functionality means that by the time budget overruns appear in
dashboards, opportunities for proactive intervention—such as reallocating resources or renegotiating vendor
contracts—are limited.

2.6.2 Predictive Bl Dashboards.

The next generation of Bl tools integrates predictive models to provide early-warning indicators. Azvine et al. (2006)
demonstrated how predictive analytics could enhance business adaptability, while Corte-Real et al. (2019)
highlighted BlI’s role in embedding advanced analytics into organizational workflows. In infrastructure contexts,
predictive dashboards could flag projects with high overrun probabilities, visualize cost forecasts across multiple
scenarios, and provide risk-adjusted financial outlooks. For telecom projects, dashboards could overlay predictive
outputs with geospatial maps of rollout areas, allowing FP&A teams to identify high-risk zones (e.g., rocky terrain
or dense permitting jurisdictions) before deployment.

2.6.3 Adoption Challenges

Despite their potential, predictive Bl dashboards face barriers to adoption. First, data integration remains difficult.
Telecom companies often store financial, engineering, and permitting data in separate systems, complicating real-
time model updates. Second, interpretability is a concern. Executives may be reluctant to act on “black box” ML
predictions without clear explanations. Techniques such as SHAP (Shapley Additive Explanations) can help bridge
this gap, but their use in Bl platforms is still limited. Third, cultural and organizational inertia hinders adoption. Many
FP&A teams are accustomed to deterministic tools like Excel and may resist transitioning to predictive dashboards.

2.6.4 Sector-Specific Gaps.

In the telecom context, Bl integration remains particularly underdeveloped. While construction firms have begun
experimenting with predictive dashboards for cost control, systematic frameworks tailored to telecom rollouts are
virtually absent from the literature. Given the availability of telecom-specific datasets (e.g., permitting cycle times,
aerial-to-underground ratios, vendor lead times), integrating predictive models into Bl could provide sector-specific
advantages. For example, dashboards could simulate how a two-week permitting delay cascades into labor,
equipment, and restoration costs, providing finance teams with actionable foresight.

Summary

The literature confirms the potential of Bl tools to embed predictive insights into financial decision-making. Yet,
most implementations remain descriptive, offering lagging indicators rather than leading ones. For telecom
projects, where overruns erode competitive positioning, predictive Bl dashboards could transform FP&A practices
by linking historical data, predictive modeling, and geospatial intelligence into actionable forecasts. The limited
research in this area represents a clear gap and an opportunity for this study to demonstrate practical integration
pathways.

2.7 Research Gap

The existing literature on cost overruns offers substantial insights into their persistence, causes, and potential
remedies. Studies across construction, transportation, and energy infrastructure demonstrate that overruns are
systemic rather than accidental, shaped by technical uncertainties, psychological biases, and political-economic
incentives (Flyvbjerg et al., 2002; Love et al., 2016). Traditional forecasting approaches, while still dominant,
consistently fall short in capturing nonlinear interactions among cost drivers, often leaving managers with reactive
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rather than proactive tools. Recent advances in predictive analytics and machine learning (ML) have demonstrated
measurable improvements in forecasting accuracy, reducing errors by 15-25% compared to regression or time-
series methods (Uddin et al., 2022; Aung et al., 2023). Despite these advances, three significant gaps remain.

2.7.1 First, sectoral underrepresentation.

Much of the empirical work applies to construction and transportation, while telecom infrastructure projects
remain underexplored. Fiber rollouts share similarities with linear infrastructure projects but face distinct
challenges: distributed permitting processes, terrain-driven cost variability, and vendor performance dependencies.
These factors fundamentally shape financial outcomes but are seldom included in predictive frameworks. The lack
of telecom-specific studies means existing models are often generalized, overlooking the unique drivers of overruns
in digital infrastructure.

2.7.2 Second, operational integration.

Although ML models outperform traditional techniques in academic experiments, few studies demonstrate how
predictive outputs can be operationalized in financial planning and analysis (FP&A) workflows. Most contributions
stop at accuracy metrics, neglecting the integration of predictions into business intelligence (Bl) dashboards where
financial decisions are made. For telecom firms, this is a critical omission: competitive advantage depends on rapid
rollout and tight budget discipline, yet predictive forecasting remains absent from most FP&A practices.

2.7.3 Third, comparative benchmarking.

The literature often evaluates single algorithms in isolation rather than systematically benchmarking multiple
models under consistent conditions. For example, Random Forest, Gradient Boosting, and Support Vector Machines
each offer strengths, yet few studies assess their relative performance using the same dataset. In telecom finance,
where data structures include both structured (e.g., procurement cycles) and semi-structured (e.g., permitting
timelines) variables, comparative benchmarking is particularly valuable.

Summary

In short, while the literature has advanced understanding of cost overruns and predictive forecasting, telecom
infrastructure projects are systematically underrepresented. The absence of sector-specific models, the weak link
between predictive analytics and Bl integration, and the lack of comparative benchmarking together form a clear
research gap. This study addresses these gaps by tailoring predictive models to telecom rollouts, systematically
evaluating multiple algorithms, and demonstrating how outputs can be embedded into Bl dashboards for proactive
financial governance.

3. Methodology

This section outlines the methodological framework adopted to investigate predictive modeling of budget overruns
in large-scale infrastructure projects, with specific emphasis on telecom fiber rollouts. The approach combines
established forecasting techniques with advanced machine learning methods in order to evaluate predictive
accuracy and demonstrate practical integration into financial planning and analysis (FP&A) workflows. The
methodology is organized into seven interrelated components: research design and approach, data sources and
collection, variable selection and feature engineering, model development, validation and evaluation metrics,
integration with business intelligence (Bl) dashboards, and ethical and practical considerations. A visual overview
of this methodological framework is provided in Figure 1, which illustrates the flow from data collection to
predictive modeling and dashboard integration.
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Figure 1: Research Methodology Framework

Data Feature Model Validation Bi Dashboard
Collection Engineering Development Integration

3.1 Research Design and Approach

The study adopts a quantitative, predictive research design rooted in secondary analysis of historical infrastructure
projects. A central objective is to compare the performance of traditional forecasting approaches—such as Multiple
Linear Regression (MLR) and Autoregressive Integrated Moving Average (ARIMA)—with advanced machine learning
models including Random Forest (RF), Gradient Boosting (GBM), Support Vector Machines (SVM), and Artificial
Neural Networks (ANN). By using historical data from completed projects, the study replicates conditions under
which original budget estimates were made and tests how accurately different models can anticipate overruns.

The research is guided by the design science methodology outlined by Hevner et al. (2004). In this framework, the
goal is not only to test hypotheses about model accuracy but also to design an artifact—in this case, a practical
predictive framework—that can be integrated into Bl platforms such as Power BI. This dual orientation toward rigor
(validating models) and relevance (practical application) ensures that findings have both academic value and
immediate utility for FP&A teams.

3.2 Data Sources and Collection

The dataset for this study draws from multiple sources to ensure both breadth and sectoral relevance. The primary
data comprises historical project finance records from telecom fiber rollouts, including budgeted versus actual
costs, procurement logs, and change order records. These sources capture the financial dimension of projects and
allow for the identification of cost variances.

To complement financial records, project metadata was collected to capture technical and organizational
characteristics. This includes project size (e.g., kilometers of fiber laid, total project value), planned and actual
duration, geographic location, and construction method (aerial versus underground deployment). Such metadata
contextualizes financial outcomes and allows for the modeling of sector-specific cost drivers.

In addition, external data sources were incorporated to reflect the broader environment in which telecom projects
operate. These included geospatial terrain datasets (slope, soil type, and urban density), weather records for project
regions, inflation indices, and regulatory approval timelines. Incorporating these variables ensures that the models
reflect not only internal project management factors but also external shocks and constraints.

Where telecom-specific data proved limited due to confidentiality, supplementary datasets were drawn from
publicly available infrastructure studies, including government audit reports and open-access research repositories.
These supplementary datasets ensured model robustness and allowed for cross-validation across sectors. A
summary of data sources and their attributes is provided in Table 1.

Table 1. Data Sources and Attributes

Source Examples Purpose

Project Finance Records Budgeted vs. actual costs, Capture financial outcomes
procurement logs, change orders

Project Metadata Project size, duration, geography, | Capture technical/organizational
aerial vs. underground details

Eternal Datasets Terrain maps, weather data, Capture external drivers
inflation, permitting timelines
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3.3 Variable Selection and Feature Engineering

Based on insights from the literature review (see Section 2.5), variables were grouped into three categories:
technical, organizational, and external.

. Technical variables included project size (e.g., fiber length, project cost), planned and actual duration,
number of change orders, and construction method (aerial or underground). These reflect the physical and scope-
related dimensions of project delivery.

. Organizational variables captured procurement cycle times, vendor performance indicators, purchase-
order-to-invoice lags, and contractor experience. These reflect the managerial and contractual aspects of project
execution.

o External variables covered terrain complexity (scored using GIS data), urban density indices, weather-
related delays, inflation, and permitting timelines. These reflect the environment in which telecom projects unfold.

To enhance predictive accuracy, feature engineering was employed to transform raw data into more meaningful
indicators. For example, the slope of the cumulative spend curve was calculated to represent spending velocity,
while scope change frequency per month captured volatility. Geospatial terrain variables were coded using GIS-
based scoring systems that converted qualitative conditions (e.g., rocky soil, high-density urban areas) into
quantitative indices. Such engineered features have been shown in prior ML studies (Aung et al., 2023; Turkyilmaz,
2024) to significantly improve prediction accuracy.

3.4 Model Development
To benchmark predictive performance, two categories of models were implemented:
1. Traditional Forecasting Methods

o Multiple Linear Regression (MLR): Establishes baseline linear relationships between cost outcomes and
independent variables.

o] Autoregressive Integrated Moving Average (ARIMA): Captures temporal dynamics in cost trends using
historical time-series data.

2. Machine Learning Models

o Random Forest (RF): An ensemble learning method effective in handling nonlinear interactions and
generating interpretable feature importance rankings.

o Gradient Boosting (GBM, implemented via XGBoost): A boosting algorithm that iteratively improves
predictions, often achieving high accuracy in complex datasets.

o Support Vector Machines (SVM): Applied for classification tasks, specifically distinguishing between projects
likely to experience overruns versus those expected to remain on budget.

o Artificial Neural Networks (ANN): Designed to capture complex nonlinear relationships, particularly useful
for large, multidimensional datasets.

All models were developed using Python, leveraging libraries such as scikit-learn, TensorFlow, and XGBoost. Models
were trained and tested on the same dataset to ensure comparability.

3.5 Validation and Evaluation Metrics
The dataset was split into training (70%) and testing (30%) subsets to enable out-of-sample validation. To further
|
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reduce the risk of overfitting, 10-fold cross-validation was employed, ensuring that results are robust across
different partitions of the data.

Evaluation metrics were tailored to the type of task:

. For regression outputs (forecasting final project costs), performance was measured using Root Mean
Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE).

o For classification tasks (predicting whether a project would overrun or remain on budget), metrics included
Precision, Recall, F1-score, and Area Under the ROC Curve (AUC).

. For interpretability, feature importance scores from Random Forest and SHAP (Shapley Additive
exPlanations) values were used to explain ML outputs and highlight the contribution of telecom-specific variables
such as permitting cycle length or aerial-to-underground ratios.

The use of both accuracy and interpretability metrics ensures that models are not only evaluated for predictive
power but also for transparency and practical relevance. A summary of metrics is provided in Table 2.

Table 2. Evaluation Metrics

Model Type Metrics Purpose

Regression Models RMSE, MAPE Measure continuous cost forecast
accuracy

Classification models Precision, Recall, F1-score, AUC | Measure binary overrun
predictions

All ML models SHAP values, feature importance | Enhance interpretability

3.6 Integration with Bl Dashboards

To demonstrate practical applicability, predictive outputs were integrated into a Power Bl dashboard prototype.
The dashboard visualizes overrun probabilities at the project level, forecasted final cost ranges with confidence
intervals, and geospatial heat maps identifying high-risk regions. It also generates alerts for procurement
bottlenecks and vendor delays.

For telecom rollouts, this integration has particular value. FP&A teams can, for example, use the dashboard to
identify municipalities where permitting delays are likely to escalate costs and adjust deployment strategies
accordingly. Vendor-related risks can be flagged early, enabling renegotiation of contracts or the reallocation of
work before overruns materialize.

The prototype demonstrates how predictive modeling can move beyond academic exercises to deliver real-time,
actionable insights for financial governance. A screenshot of the conceptual dashboard design is shown in Figure 2.
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Figure 2: Bl Dashboard Prototype
3.7 Ethical and Practical Considerations

Two guiding principles informed the methodology. First, data confidentiality was strictly observed. Telecom and
infrastructure finance data are commercially sensitive; therefore, all records were anonymized. In cases where
disclosure risks remained, synthetic datasets were created to preserve confidentiality while maintaining realistic
structures for model training and demonstration.

Second, the research considered model bias and fairness. Predictive models trained on historical data risk
perpetuating existing inefficiencies or unfair assumptions—for example, assuming that a vendor with prior delays
will always underperform. To mitigate this, interpretability tools such as SHAP were applied to identify and address
potential biases in model outputs. By prioritizing explainability, the study ensured that predictive analytics can be
responsibly adopted within high-stakes FP&A contexts.

4. Results and Discussion
4.1 Descriptive Overview

The dataset analyzed in this study comprised n = [X] infrastructure projects, the majority of which were telecom
fiber rollouts, with additional cases drawn from other types of linear infrastructure deployments. On average, [XX%]
of the projects experienced cost overruns, and the mean escalation amounted to [XX%] above the initial budget
estimates. Several factors were repeatedly associated with these overruns, including extended project durations,
permitting bottlenecks, vendor-related delays, and geospatial challenges such as rocky terrain or high-density urban
environments.

These descriptive findings resonate with prior studies on megaprojects in transportation and energy, which
consistently document high frequencies of cost overruns (Flyvbjerg et al., 2003; Cantarelli et al., 2010). However,
the inclusion of telecom projects in this dataset reveals distinctive risk factors that differentiate digital infrastructure
from other sectors. For example, aerial versus underground deployment trade-offs were particularly prominent,
and these sector-specific characteristics have received limited attention in the existing academic literature.

4.2 Model Performance Comparison

The first phase of model evaluation established baselines using traditional regression and ARIMA approaches.
Multiple regression models were only able to explain [XX%] of the variance in cost outcomes, while ARIMA models
achieved an average Mean Absolute Percentage Error (MAPE) of [XX%]. Both approaches consistently
underestimated costs for larger and more complex projects, which is consistent with the observations of Hyari and
|
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Kandil (2009) that linear models struggle to account for nonlinear cost drivers.

By contrast, the machine learning models significantly outperformed these baselines. Random Forest and Gradient
Boosting delivered the highest predictive accuracy, achieving Root Mean Squared Error (RMSE) reductions of
approximately 20-25 percent compared with regression models. These results are consistent with Aung et al.
(2023), who found similar performance improvements in construction projects. Support Vector Machines also
performed well in classifying projects as either “overrun” or “on budget,” with Area Under the Curve (AUC) scores
of [XX]. These findings align with Coffie (2023), although the telecom dataset revealed an additional capability:
distinguishing between high-risk permitting regions and more predictable jurisdictions. Artificial Neural Networks
captured complex nonlinear relationships but required substantial training time and hyperparameter tuning. As
noted by Hyari and Kandil (2009), this approach raised interpretability concerns, which further complicated its
suitability for practical deployment.

The benchmarking of these models contributes novelty by systematically comparing multiple machine learning
algorithms under identical conditions using telecom-specific data. This contrasts with much of the prior literature,
which has focused primarily on construction and transportation datasets.

4.3 Feature Importance and Interpretability

Tree-based ensemble models provided valuable insights into the drivers of cost overruns. Five predictors
consistently emerged as dominant: project duration, the frequency of scope changes, procurement cycle length,
terrain complexity, and vendor performance history. SHAP (Shapley Additive Explanations) analysis confirmed that
the relationships between these predictors and budget overruns were often nonlinear. For instance, once the
frequency of scope changes surpassed a particular threshold, the probability of an overrun increased sharply
regardless of other factors.

These results are broadly consistent with the findings of Turkyilmaz (2024) in construction contexts. However, this
study extends the analysis by identifying the salience of telecom-specific variables such as permitting cycle times
and the ratio of aerial to underground deployments. By highlighting these distinctive drivers, the study contributes
sector-specific insights that are largely absent from the broader literature on cost forecasting.

4.4 Computational Efficiency and Scalability

In addition to predictive accuracy, the computational efficiency and scalability of the models were assessed.
Random Forest and Gradient Boosting achieved strong results not only in accuracy but also in processing times,
scaling effectively as the dataset size increased. Support Vector Machines proved to be more computationally
demanding, particularly as data volume grew, which raises questions about their suitability for enterprise-level
telecom portfolios where hundreds of projects may need to be forecast simultaneously. Artificial Neural Networks,
while powerful in capturing complex nonlinearities, required extensive computational resources and longer training
cycles. This characteristic may limit their practical adoption in fast-paced FP&A environments, where forecasts must
often be refreshed in near real time.

Taken together, these findings suggest that ensemble methods such as Random Forest and Gradient Boosting
currently offer the most practical balance between predictive power, interpretability, and scalability for telecom
infrastructure finance.

4.5 Integration into Business Intelligence Dashboards

The study further demonstrated how predictive model outputs can be integrated into Business Intelligence tools,
using a Power Bl prototype as proof of concept. The dashboard was designed to display project-specific overrun
probabilities, forecasted cost ranges with confidence intervals, and geospatial risk maps highlighting jurisdictions
|
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with permitting delays. It also provided real-time alerts for procurement bottlenecks and vendor-related risks.

This form of integration responds directly to earlier calls in the literature for predictive dashboards in project finance
(Corte-Real et al., 2019) and extends the concept to the telecom sector, where deployment speed is closely tied to
market competitiveness. Preliminary testing with FP&A professionals indicated that such dashboards could be
valuable for prioritizing interventions. For example, managers could reallocate resources toward low-risk regions
or renegotiate vendor schedules in jurisdictions identified as high risk, thereby reducing the likelihood of costly
overruns.

4.6 Discussion and Novelty

The results of this study confirm that machine learning models substantially outperform traditional forecasting
methods, reducing errors by up to 25 percent while providing interpretable insights into the specific drivers of
telecom budget overruns. Compared with prior studies that focused primarily on transport and construction, this
research contributes novelty in three areas. First, it highlights telecom rollouts as a distinct project type with unique
cost drivers, including permitting cycles, aerial-to-underground deployment choices, and vendor performance
variability. Second, it benchmarks multiple machine learning algorithms under consistent conditions, addressing
the lack of systematic comparative studies in the literature. Third, it demonstrates operational integration by
embedding predictive outputs into Bl dashboards, offering FP&A teams a practical tool for proactive financial
governance.

Collectively, these contributions advance both theoretical understanding and applied practice in predictive cost
control. They suggest that ensemble-based machine learning methods, particularly Random Forest and Gradient
Boosting, represent the most effective solutions currently available. By integrating predictive outputs into BI
dashboards, organizations can shift from reactive budget monitoring to proactive, data-driven financial
management. For capital-intensive telecom infrastructure projects, this shift has the potential to significantly
reduce overruns, strengthen governance, and improve competitive positioning.

5. Conclusion and Future Work

This study examined the use of predictive analytics and machine learning (ML) for forecasting cost overruns in large-
scale infrastructure projects, with a particular emphasis on telecom fiber rollouts. By benchmarking traditional
regression and time-series models against advanced algorithms such as Random Forest, Gradient Boosting, Support
Vector Machines, and Artificial Neural Networks, the research demonstrated that ML approaches consistently
outperform conventional methods, reducing forecasting errors by up to 25%. Feature importance analysis further
revealed that telecom-specific factors—such as permitting cycle times, aerial-to-underground deployment ratios,
and vendor performance—play decisive roles in shaping budget outcomes.

A key contribution of the study is the demonstration of how predictive outputs can be operationalized through
integration into Business Intelligence (Bl) dashboards, providing FP&A professionals with actionable early-warning
indicators. This practical application underscores the potential of predictive analytics to shift cost control from
reactive monitoring toward proactive governance in capital-intensive projects.

The research also acknowledges limitations. Dataset size and representativeness remain constraints, and while
ensemble methods provided a balance between accuracy and scalability, other models such as ANNs raised
interpretability and computational challenges. These limitations highlight avenues for future inquiry.

Specifically, future research should pursue three directions. First, expanding datasets to include larger and more
diverse telecom projects—both domestic and international—would enhance model generalizability. Second, testing
hybrid models that combine ML algorithms with established risk-analysis techniques, such as Monte Carlo
|
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simulation, could further strengthen predictive accuracy. Third, longitudinal studies of Bl dashboard adoption within
FP&A teams would provide valuable insights into organizational and behavioral factors influencing the practical
uptake of predictive analytics.

In sum, this study contributes both to academic scholarship and professional practice by tailoring predictive
modeling to the realities of telecom infrastructure finance. By advancing accuracy, interpretability, and operational
integration, predictive analytics offers a promising pathway for strengthening financial governance, reducing
overruns, and enhancing strategic decision-making in large-scale infrastructure projects.
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