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ABSTRACT 

Cost overruns remain one of the most pressing challenges in large-scale infrastructure projects. Telecom fiber 

rollouts, transportation systems, and energy networks often experience escalating budgets that reduce profitability, 

delay schedules, and undermine stakeholder confidence. Traditional forecasting methods—such as expert 

judgment and deterministic models—tend to be reactive and rarely anticipate risks early enough for corrective 

action. This research introduces a predictive analytics framework that leverages historical project data to forecast 

potential budget overruns and provide early-warning signals for financial decision-makers. 

Budgetary performance is shaped by technical, organizational, and external factors including scope changes, terrain 

complexity, vendor delays, and shocks such as weather or regulatory constraints. Conventional cost-control systems 

often fail to account for the nonlinear interactions among these variables. By applying machine learning–based 

predictive modeling, this study seeks to uncover hidden patterns in historical datasets and enhance the precision 

of overrun forecasts. 

Methodologically, the research compares regression and time-series approaches with advanced algorithms such as 

Random Forest, Gradient Boosting, and Support Vector Machines. Anticipated results suggest that machine learning 

models can reduce forecasting error by 15–25% compared to traditional methods, while also providing classification 

metrics to better identify projects at risk of escalation. 

The contributions are threefold: (1) identifying cost drivers most strongly associated with overruns; (2) 

demonstrating the relative performance gains of machine learning compared with traditional approaches; and (3) 

outlining a practical framework for embedding predictive outputs into business intelligence dashboards used in 

financial planning and analysis. By focusing on infrastructure finance, particularly telecom rollouts where terrain-

driven costs create high uncertainty, the study emphasizes how predictive analytics can strengthen financial 

governance, mitigate overruns, and support more reliable decision-making in capital-intensive projects. 

KEYWORDS 

Cost overruns; predictive analytics; machine learning (ML); infrastructure finance; telecom; business intelligence; 

financial planning. 

1. Introduction 

Large-scale infrastructure projects represent some of the most complex and capital-intensive undertakings in 

modern economies. They involve extended timelines, multiple stakeholders, and significant financial commitments. 
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Despite advances in project management practices and financial governance, cost overruns remain a persistent 

problem across sectors such as telecommunications, transportation, and energy. Studies consistently show that a 

majority of megaprojects exceed their original cost estimates, in some cases by more than 50 percent. These 

overruns reduce profitability, delay delivery, erode investor confidence, and damage the reputations of both 

contractors and owners. In telecom fiber rollouts—where deployment speed is closely tied to market 

competitiveness—budget escalations can have particularly severe financial and strategic consequences. 

Against this backdrop, this study is guided by three central objectives: 

1. To identify and quantify the key drivers of cost overruns across technical, organizational, and external domains. 

2. To compare the predictive performance of traditional methods (e.g., regression and time-series models) against 

advanced machine learning approaches such as Random Forest, Gradient Boosting, and Support Vector Machines. 

3. To outline a practical integration framework that embeds predictive models into business intelligence dashboards 

for proactive financial planning and analysis (FP&A). 

By placing the research aims early, the paper clarifies its scope: developing, testing, and evaluating a predictive 

modeling framework for forecasting budget overruns in infrastructure projects using historical data. 

Traditional approaches to cost forecasting—such as expert judgment, deterministic models, or static variance 

analysis—have proven inadequate in preventing financial slippage. These methods rely on assumptions that rarely 

reflect the uncertainty and complexity of large projects. They are also reactive: cost risks are identified only after 

significant deviations occur. For example, tracking expenditures against baselines can reveal overspending, but by 

that stage opportunities for corrective action are limited. What is needed is a shift from reactive monitoring to 

proactive prediction, where risks are identified early enough to inform strategic and financial decisions. 

Recent advances in data analytics, machine learning (ML), and business intelligence (BI) platforms create 

opportunities to transform cost forecasting practices. Infrastructure projects generate vast amounts of data—from 

procurement cycles and vendor performance records to labor productivity and geospatial terrain conditions. When 

structured and analyzed effectively, this historical data can reveal correlations that traditional models often miss. 

Predictive analytics, by learning from prior project outcomes, offers the potential to forecast overruns with greater 

accuracy and earlier warnings. 

The promise of predictive analytics in infrastructure finance rests on three considerations. First, cost overruns are 

rarely attributable to a single factor; rather, they emerge from complex, nonlinear interactions among technical, 

organizational, and external drivers. Variables such as terrain complexity, weather disruptions, procurement delays, 

and scope changes interact in ways that traditional linear models struggle to capture. ML algorithms, by contrast, 

are well-suited to modeling such interactions. Second, predictive analytics can move beyond generic benchmarks 

by tailoring forecasts to the characteristics of a given project portfolio. For instance, a model trained on historical 

telecom rollout data could distinguish between aerial and underground installations, incorporating terrain-driven 

risk into its predictions. Third, predictive outputs can now be integrated into BI dashboards such as Power BI or 

Tableau, placing model insights directly into the decision-making environments of financial planners and project 

managers. 

This study builds upon prior scholarship on project forecasting and cost overruns while addressing notable gaps. 

Seminal work by Flyvbjerg and colleagues has linked systematic underestimation to optimism bias and strategic 

misrepresentation. Other studies have tested statistical and ML-based forecasting methods in construction contexts 

with encouraging results. Yet relatively little attention has been paid to designing practical, data-driven frameworks 

that can be embedded into FP&A workflows for real-time decision support—particularly in telecom and linear 
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infrastructure sectors. 

By focusing on telecom fiber deployments and related infrastructure projects, this research contributes both to the 

academic literature and to practical project finance management. The findings are expected to demonstrate the 

superior accuracy of ML models compared to traditional methods, while also showing their applicability to FP&A 

professionals, project managers, and executives seeking stronger financial discipline. 

The remainder of this paper is structured as follows. Section 2 reviews the existing literature on cost overruns, 

forecasting biases, and predictive modeling approaches. Section 3 describes the methodology, including data 

collection, feature engineering, and model development. Section 4 presents results, comparing model performance 

across algorithms. Section 5 discusses implications for project finance and FP&A integration. Section 6 concludes 

with recommendations, study limitations, and directions for future research. 

2. Literature review: 

2.1 Cost Overruns in Infrastructure Projects  

Cost overruns have long been recognized as a defining challenge in large-scale infrastructure delivery. Early 

empirical research, such as Flyvbjerg et al. (2003), revealed that megaprojects across transport, energy, and urban 

development frequently exceed their original budgets—sometimes by more than 50 percent. These overruns are 

rarely isolated incidents but reflect systemic issues tied to project complexity, extended timelines, and the 

involvement of multiple stakeholders. Later studies reinforced that the problem is global in nature, with similar 

outcomes observed in both developed and emerging economies (Cantarelli et al., 2010). 

The persistence of overruns has attracted scholarly attention for decades. Research has shown that initial cost 

estimates often fail to capture the full range of risks, whether due to inadequate data, overly optimistic 

assumptions, or deliberate underestimation. As a result, infrastructure projects frequently experience cost 

escalations that erode profitability, undermine investor confidence, and delay service delivery. In sectors such as 

transportation, this has led to public scrutiny and calls for more transparent governance frameworks. 

Despite extensive literature on construction and transport, relatively little emphasis has been placed on 

telecommunications infrastructure, even though similar patterns are evident. Fiber rollout programs, for instance, 

often suffer from budget escalation due to permitting bottlenecks, vendor-related delays, and geospatial challenges 

such as rocky terrain or dense urban conditions. Like highways or rail networks, telecom projects are linear, capital-

intensive, and subject to external shocks. However, they differ in the pace at which overruns impact strategic 

outcomes, since deployment speed directly shapes competitive advantage in digital markets. 

This historical context highlights that while the drivers of overruns are broadly understood, sector-specific insights 

into telecom finance remain limited. Addressing this gap is critical for developing predictive frameworks that reflect 

the realities of modern digital infrastructure. 

2.2 Causes of Cost Overruns  

Scholars typically explain cost overruns through three broad categories: technical, psychological, and political-

economic factors (Flyvbjerg et al., 2003; Love et al., 2016). Together, these frameworks demonstrate that overruns 

emerge from a combination of unforeseen risks, human behavior, and institutional incentives. 

2.2.1 Technical Causes. 

Technical explanations focus on incomplete designs, inadequate risk assessment, and unforeseen site conditions. 

Morris (1990) highlighted how design errors and scope gaps often force costly mid-project adjustments. Similarly, 

Cantarelli et al. (2010) found that construction projects frequently encounter ground conditions or utility conflicts 
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not anticipated in surveys. In telecom rollouts, technical risks manifest in ways such as hitting unexpected 

underground utilities, encountering rock-heavy terrain, or facing higher-than-expected restoration costs in urban 

corridors. These challenges mirror those in transport but are exacerbated by the linear, distributed nature of fiber 

networks, where each additional mile increases exposure to local variability. 

2.2.2 Psychological Causes. 

Psychological explanations emphasize cognitive biases. Kahneman and Tversky’s (1979) planning fallacy shows that 

people systematically underestimate risks and overestimate efficiency. Optimism bias, as later discussed by Lovallo 

and Kahneman (2003), leads project promoters to assume best-case scenarios, producing unrealistically low cost 

estimates. Even seasoned professionals are vulnerable. In telecom finance, this bias may appear in assumptions 

that permitting will move smoothly or that contractors will meet aggressive timelines, despite past evidence to the 

contrary. Such misplaced optimism results in cost forecasts that are misaligned with operational realities. 

2.2.3 Political-Economic Causes. 

A third category highlights strategic misrepresentation. Flyvbjerg et al. (2002) argued that promoters sometimes 

deliberately understate costs and overstate benefits to win political approval or secure funding. Cantarelli et al. 

(2010) distinguish between unintentional error and deliberate “lies” in cost estimation. While these dynamics are 

well documented in publicly funded rail and road projects, they also apply to telecom. Competitive bidding, 

regulatory oversight, and the race for market share may incentivize underreporting costs on paper, with the true 

expenditures surfacing only after rollout begins. 

2.2.4 Interaction of Causes. 

In practice, these categories overlap. For example, optimism bias may lead to underestimating permitting delays 

(psychological), while unforeseen underground conditions add technical risk, and competitive pressures incentivize 

cost understatement (political-economic). This layering makes overruns systemic rather than accidental (Love et 

al., 2016). 

2.2.5 Mitigation Efforts. 

Scholars have suggested several remedies. Reference class forecasting (Flyvbjerg, 2008) improves estimates by 

benchmarking against historical project outcomes, adjusting for optimism bias. Risk-based approaches incorporate 

probability distributions but depend heavily on data quality (Ahiaga-Dagbui & Smith, 2014). Despite these advances, 

few frameworks explicitly address telecom-specific challenges, where permitting, terrain-driven costs, and vendor 

performance play outsized roles. 

Summary 

The causes of cost overruns are well studied in transport and construction but underexplored in telecom. While 

technical, psychological, and political-economic explanations apply broadly, sector-specific risks—such as 

distributed project footprints and regulatory bottlenecks—require tailored approaches. Predictive analytics has the 

potential to bridge this gap by integrating diverse factors into proactive cost-control frameworks. 

2.3 Traditional Forecasting Approaches 

Traditional forecasting methods remain widely used in project finance, largely because of their transparency, 

familiarity, and compliance with industry standards. However, their limitations are well documented, especially in 

dynamic sectors like telecommunications, where cost drivers are diverse and highly context-dependent. 

2.3.1 Deterministic Estimation Methods. 
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Deterministic techniques such as bottom-up and parametric estimation are among the oldest and most prevalent. 

Bottom-up estimation aggregates detailed costs at the work-package level, while parametric models apply 

statistical relationships between project attributes and costs (PMI, 2017). Christensen et al. (1995) note that these 

approaches are useful during early budgeting stages because of their traceability. Yet they are highly sensitive to 

assumptions. In telecom fiber rollouts, for instance, parametric models may assume a uniform per-mile installation 

cost, overlooking how terrain type, population density, or municipal permitting significantly alter actual 

expenditures. This simplification often results in underestimated budgets that fail to capture local realities. 

2.3.2 Regression and Time-Series Models. 

Regression has long been employed to identify cost predictors, with Odeck (2004) showing project size and duration 

as key determinants of overruns in Norwegian road projects. Time-series models such as ARIMA have also been 

used to forecast expenditure trends (Hyari & Kandil, 2009). While these methods capture linear relationships and 

temporal patterns, they struggle with nonlinear effects and sudden shocks, such as vendor delays or regulatory 

interventions. For telecom, where rollout speed can be disrupted by unexpected permitting constraints or utility 

conflicts, reliance on past patterns proves insufficient. 

2.3.3 Variance Analysis and Earned Value Management. 

Variance analysis and earned value management (EVM) remain standard for monitoring financial performance. 

EVM integrates scope, cost, and schedule metrics into indices such as the Cost Performance Index (CPI) and is often 

mandated in government contracts (Fleming & Koppelman, 2010). Although EVM provides diagnostic insights, its 

predictive power is limited. Batselier and Vanhoucke (2015) found that EVM forecasts lose accuracy as project 

uncertainty grows. In telecom rollouts, this means that while EVM can flag deviations after they occur, it rarely 

anticipates overruns linked to delayed right-of-way approvals or shifting material costs. 

2.3.4 Limitations in the Telecom Context. 

Across these approaches, three limitations are evident. First, they rely on linear simplifications that fail to capture 

the interaction of multiple drivers—such as how permitting delays compound with vendor inefficiencies and 

weather impacts in fiber rollouts. Second, they are largely reactive, highlighting deviations only after overruns have 

already materialized, leaving little room for timely intervention. Third, they lack sensitivity to sector-specific 

conditions. For example, deterministic models treat costs per unit of fiber as uniform, regression models overlook 

permitting volatility, and EVM cannot adapt to the nonlinear escalation triggered by multiple scope changes. 

Summary 

Traditional forecasting tools provide structure and interpretability but are inadequate for managing the uncertainty 

and complexity of modern infrastructure, particularly telecom deployments. They diagnose problems rather than 

predict them, and they generalize rather than adapt to sector-specific realities. This underscores the need for 

predictive analytics frameworks capable of incorporating diverse variables and learning from historical telecom data 

to generate early-warning indicators. 

2.4 Predictive Analytics and Machine Learning in Cost Forecasting 

The limitations of traditional forecasting approaches have prompted increasing interest in predictive analytics and 

machine learning (ML) for cost estimation and overrun prediction. Unlike deterministic or regression-based 

methods, ML models can capture nonlinear relationships, handle large and complex datasets, and adapt to project-

specific contexts (Ahiaga-Dagbui & Smith, 2014). This makes them particularly suitable for infrastructure projects, 

where multiple interdependent factors—ranging from technical risks to external shocks—shape financial 

performance. 
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2.4.1 Adoption of Predictive Analytics in Project Forecasting 

Predictive analytics refers broadly to the use of statistical and computational methods to forecast future outcomes 

based on historical data patterns. In project finance, predictive analytics has been used to model cost growth, 

schedule slippages, and risk likelihoods (Love et al., 2016). The ability to move from reactive diagnostics (e.g., 

variance analysis) to proactive prediction represents a paradigm shift in financial planning and analysis (FP&A). 

For instance, Kim et al. (2009) applied artificial neural networks (ANNs) to forecast cost deviations in highway 

projects, demonstrating improved accuracy compared to regression models. Similarly, Cheng et al. (2010) used data 

mining techniques to analyze change orders in construction, showing that predictive approaches can anticipate 

overruns before they occur. These early studies laid the groundwork for more sophisticated ML applications. 

2.4.2 Machine Learning Models in Cost Overrun Prediction 

ML techniques differ in how they identify patterns and make predictions: 

• Regression Trees and Random Forests: Decision tree–based models can capture nonlinear effects and interactions 

among variables such as project size, duration, and procurement cycle length. Random Forests, an ensemble of 

decision trees, have been shown to outperform single regression models in predicting cost escalation (Aung et al., 

2023). 

• Support Vector Machines (SVMs): Coffie (2023) applied SVMs to infrastructure projects and demonstrated strong 

predictive performance, particularly in binary classification tasks such as predicting whether a project would 

overrun or not. 

• Gradient Boosting and XGBoost: Ensemble boosting algorithms incrementally improve model accuracy by focusing 

on misclassified instances. Uddin et al. (2022) compared Gradient Boosting with logistic regression, KNN, and 

Random Forest, finding Gradient Boosting to be among the most accurate for cost overrun classification. 

• Artificial Neural Networks (ANNs): ANNs are capable of modeling complex, nonlinear patterns in project data. 

Hyari and Kandil (2009) reported that ANNs outperformed regression in predicting cost deviations in U.S. highway 

projects. However, ANNs are sometimes criticized for being “black-box” models, offering limited interpretability to 

project stakeholders. 

• Hybrid Approaches: Recent research has also explored combining ML with simulation techniques. For example, 

Turkyilmaz (2024) proposed a hybrid risk score–based ML framework for classifying projects into overrun severity 

categories, improving interpretability for decision-makers. 

2.4.3 Key Findings from Empirical Studies 

Across empirical studies, several findings emerge: 

1. ML models generally outperform traditional methods in predictive accuracy, especially in high uncertainty 

contexts (Aung et al., 2023; Uddin et al., 2022). 

2. Feature importance analysis reveals critical drivers of cost overruns, including project size, implementation 

duration, scope change frequency, and geospatial conditions (Cheng et al., 2010). 

3. Data availability and quality remain bottlenecks: infrastructure datasets are often fragmented, project-specific, 

or confidential, which limits model generalizability (Love et al., 2016). 

4. Interpretability is a major concern: while models like Random Forests and Gradient Boosting deliver high 

accuracy, practitioners often prefer models that can explain predictions clearly, particularly for financial governance 

(Coffie, 2023). 
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2.4.4 Applications in Infrastructure and Telecom 

Most published ML applications have focused on construction and transportation projects, with relatively few 

applied directly to telecom or linear infrastructure. However, the methodological insights are transferable. For 

example, geospatial features such as terrain slope, permitting duration, and vendor delays—important in fiber 

rollouts—are analogous to geotechnical or regulatory variables in transportation projects. This suggests that 

predictive analytics can be adapted for telecom finance with appropriate feature engineering. 

In practice, predictive models can be integrated into business intelligence (BI) tools such as Power BI, Tableau, or 

custom dashboards. By embedding ML predictions into FP&A workflows, financial analysts and executives can 

receive early-warning signals about potential overruns, enabling timely corrective action. This integration bridges 

the gap between research models and operational decision-making. 

2.4.5 Research Gaps 

Despite encouraging results, three key gaps remain: 

1. Sector-Specific Studies: Telecom rollouts and other linear infrastructure projects are underrepresented in the ML 

cost forecasting literature. 

2. Operationalization: Most studies stop at demonstrating model accuracy without exploring deployment into 

BI/FP&A systems for real-time use. 

3. Comparative Evaluation: Few studies systematically benchmark multiple ML models against traditional 

forecasting techniques on the same dataset. 

Addressing these gaps is crucial for moving predictive analytics from experimental use toward practical tools for 

financial governance. This study contributes by applying predictive models to infrastructure project datasets, 

comparing their performance, and outlining how outputs can be integrated into BI platforms. 

2.5 Data-Driven Drivers of Cost Overruns  

Cost overruns are rarely explained by a single factor. Instead, they emerge from the interaction of multiple drivers 

spanning technical, organizational, and external domains. Identifying and quantifying these drivers is crucial for 

predictive modeling, since variable selection and feature engineering directly influence forecasting accuracy. 

2.5.1 Project Size and Duration. 

Project size and length of implementation are consistently among the strongest predictors of overruns. Flyvbjerg et 

al. (2003) showed that larger and longer projects face higher risks due to cumulative uncertainties, and Eliasson 

(2025) confirmed that extended timelines expose projects to inflation, labor disputes, and political risks. In telecom 

rollouts, longer projects encounter escalating risks tied to material price volatility, shifting municipal regulations, 

and evolving customer demand. A two-year fiber deployment, for example, is far more exposed to policy changes 

than a six-month project. 

2.5.2 Scope Changes and Change Orders. 

Frequent scope changes are another recurring driver. Studies in construction contexts (Love et al., 2018) 

demonstrate how incremental design changes accumulate into significant budget impacts. Telecom rollouts are 

equally vulnerable: rerouting fiber to avoid unexpected underground utilities, expanding service areas under 

political pressure, or redesigning trenching layouts due to local objections often trigger cascading overruns. Unlike 

transport megaprojects, which may face a limited number of large design shifts, telecom projects frequently suffer 

from numerous smaller adjustments spread across distributed geographies. 
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2.5.3 Procurement and Vendor Performance. 

Procurement inefficiencies and vendor-related delays are major cost drivers. Aung et al. (2023) found that purchase 

order and invoice cycle times strongly predict overruns in construction. In telecom, vendor performance is 

particularly critical because deployments rely on subcontractors for trenching, splicing, and restoration. Delays in 

one segment can stall entire rollout phases, inflating costs. Vendor lock-in or disputes over unit pricing exacerbate 

these risks. 

2.5.4 Geospatial and Environmental Conditions. 

Physical conditions significantly influence costs. Sovacool et al. (2014) demonstrated that geotechnical complexity 

is a strong predictor of overruns in energy projects. In telecom fiber rollouts, terrain features—such as rocky soil, 

high water tables, or dense urban congestion—make underground construction more costly and time-intensive. 

Similarly, aerial deployments may encounter weather-related damage risks or municipal restrictions on pole access. 

These conditions are uniquely important to telecom and highlight the inadequacy of generic parametric cost models 

that assume uniform per-mile installation costs. 

2.5.5 External and Institutional Factors. 

External drivers such as permitting, regulatory approvals, and macroeconomic variables play a decisive role. 

Cantarelli et al. (2010) highlighted institutional pressures in public projects, while the UK’s National Audit Office 

(2019) pointed to the impact of weak governance on cost outcomes. In telecom finance, permitting delays and 

right-of-way negotiations can derail timelines more than any technical factor. Inflation and exchange rate 

fluctuations further add financial uncertainty, especially when equipment is procured globally. 

2.5.6 Insights from ML-Based Feature Analysis. 

Machine learning studies confirm that data-driven feature importance analysis can reveal nuanced drivers. 

Turkyilmaz (2024) showed that risk scores derived from vendor history and geography improved predictions. Aung 

et al. (2023) found that engineered features such as cumulative spend curve slopes were highly predictive. Applied 

to telecom, similar engineered features—such as permitting cycle length, aerial-to-underground ratios, or 

restoration cost indices—could capture sector-specific dynamics that traditional models overlook. 

Summary 

The literature converges on several key drivers of overruns: project size and duration, scope volatility, procurement 

inefficiencies, geospatial complexity, and external approvals. Yet telecom-specific drivers—such as aerial vs. 

underground deployment choices, distributed permitting processes, and subcontractor variability—remain 

underexplored. Predictive models that explicitly incorporate these factors could substantially improve forecasting 

accuracy and offer more practical insights for financial governance in telecom rollouts. 

2.6 Integration with Business Intelligence Tools 

Predictive models generate value only when their insights can be incorporated into decision-making processes. 

Business Intelligence (BI) tools such as Power BI, Tableau, and Qlik have become central to financial planning and 

analysis (FP&A), offering dashboards that integrate cost, schedule, and risk metrics. However, most existing BI 

implementations remain descriptive, focusing on variance analysis and static reporting rather than predictive 

insights (Popovič et al., 2012). For sectors like telecommunications—where rollout speed and budget discipline 

directly shape competitive advantage—the absence of predictive integration represents a significant missed 

opportunity. 

2.6.1 Traditional BI Applications. 
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In many organizations, BI dashboards aggregate data from procurement, scheduling, and finance systems to 

produce performance metrics. These tools are valuable for transparency, but they primarily answer what has 

happened rather than what is likely to happen. Variance dashboards, for example, highlight budget deviations only 

after they occur. For telecom rollouts, this reactive functionality means that by the time budget overruns appear in 

dashboards, opportunities for proactive intervention—such as reallocating resources or renegotiating vendor 

contracts—are limited. 

2.6.2 Predictive BI Dashboards. 

The next generation of BI tools integrates predictive models to provide early-warning indicators. Azvine et al. (2006) 

demonstrated how predictive analytics could enhance business adaptability, while Côrte-Real et al. (2019) 

highlighted BI’s role in embedding advanced analytics into organizational workflows. In infrastructure contexts, 

predictive dashboards could flag projects with high overrun probabilities, visualize cost forecasts across multiple 

scenarios, and provide risk-adjusted financial outlooks. For telecom projects, dashboards could overlay predictive 

outputs with geospatial maps of rollout areas, allowing FP&A teams to identify high-risk zones (e.g., rocky terrain 

or dense permitting jurisdictions) before deployment. 

2.6.3 Adoption Challenges 

Despite their potential, predictive BI dashboards face barriers to adoption. First, data integration remains difficult. 

Telecom companies often store financial, engineering, and permitting data in separate systems, complicating real-

time model updates. Second, interpretability is a concern. Executives may be reluctant to act on “black box” ML 

predictions without clear explanations. Techniques such as SHAP (Shapley Additive Explanations) can help bridge 

this gap, but their use in BI platforms is still limited. Third, cultural and organizational inertia hinders adoption. Many 

FP&A teams are accustomed to deterministic tools like Excel and may resist transitioning to predictive dashboards. 

2.6.4 Sector-Specific Gaps. 

In the telecom context, BI integration remains particularly underdeveloped. While construction firms have begun 

experimenting with predictive dashboards for cost control, systematic frameworks tailored to telecom rollouts are 

virtually absent from the literature. Given the availability of telecom-specific datasets (e.g., permitting cycle times, 

aerial-to-underground ratios, vendor lead times), integrating predictive models into BI could provide sector-specific 

advantages. For example, dashboards could simulate how a two-week permitting delay cascades into labor, 

equipment, and restoration costs, providing finance teams with actionable foresight. 

Summary 

The literature confirms the potential of BI tools to embed predictive insights into financial decision-making. Yet, 

most implementations remain descriptive, offering lagging indicators rather than leading ones. For telecom 

projects, where overruns erode competitive positioning, predictive BI dashboards could transform FP&A practices 

by linking historical data, predictive modeling, and geospatial intelligence into actionable forecasts. The limited 

research in this area represents a clear gap and an opportunity for this study to demonstrate practical integration 

pathways. 

2.7 Research Gap 

The existing literature on cost overruns offers substantial insights into their persistence, causes, and potential 

remedies. Studies across construction, transportation, and energy infrastructure demonstrate that overruns are 

systemic rather than accidental, shaped by technical uncertainties, psychological biases, and political-economic 

incentives (Flyvbjerg et al., 2002; Love et al., 2016). Traditional forecasting approaches, while still dominant, 

consistently fall short in capturing nonlinear interactions among cost drivers, often leaving managers with reactive 



 

AMERICAN ACADEMIC PUBLISHER 
 

                                
 

  

https://www.academicpublishers.org/journals/index.php/ijdsml 202 

 

rather than proactive tools. Recent advances in predictive analytics and machine learning (ML) have demonstrated 

measurable improvements in forecasting accuracy, reducing errors by 15–25% compared to regression or time-

series methods (Uddin et al., 2022; Aung et al., 2023). Despite these advances, three significant gaps remain. 

2.7.1 First, sectoral underrepresentation. 

Much of the empirical work applies to construction and transportation, while telecom infrastructure projects 

remain underexplored. Fiber rollouts share similarities with linear infrastructure projects but face distinct 

challenges: distributed permitting processes, terrain-driven cost variability, and vendor performance dependencies. 

These factors fundamentally shape financial outcomes but are seldom included in predictive frameworks. The lack 

of telecom-specific studies means existing models are often generalized, overlooking the unique drivers of overruns 

in digital infrastructure. 

2.7.2 Second, operational integration. 

Although ML models outperform traditional techniques in academic experiments, few studies demonstrate how 

predictive outputs can be operationalized in financial planning and analysis (FP&A) workflows. Most contributions 

stop at accuracy metrics, neglecting the integration of predictions into business intelligence (BI) dashboards where 

financial decisions are made. For telecom firms, this is a critical omission: competitive advantage depends on rapid 

rollout and tight budget discipline, yet predictive forecasting remains absent from most FP&A practices. 

2.7.3 Third, comparative benchmarking. 

The literature often evaluates single algorithms in isolation rather than systematically benchmarking multiple 

models under consistent conditions. For example, Random Forest, Gradient Boosting, and Support Vector Machines 

each offer strengths, yet few studies assess their relative performance using the same dataset. In telecom finance, 

where data structures include both structured (e.g., procurement cycles) and semi-structured (e.g., permitting 

timelines) variables, comparative benchmarking is particularly valuable. 

Summary 

In short, while the literature has advanced understanding of cost overruns and predictive forecasting, telecom 

infrastructure projects are systematically underrepresented. The absence of sector-specific models, the weak link 

between predictive analytics and BI integration, and the lack of comparative benchmarking together form a clear 

research gap. This study addresses these gaps by tailoring predictive models to telecom rollouts, systematically 

evaluating multiple algorithms, and demonstrating how outputs can be embedded into BI dashboards for proactive 

financial governance. 

3. Methodology 

This section outlines the methodological framework adopted to investigate predictive modeling of budget overruns 

in large-scale infrastructure projects, with specific emphasis on telecom fiber rollouts. The approach combines 

established forecasting techniques with advanced machine learning methods in order to evaluate predictive 

accuracy and demonstrate practical integration into financial planning and analysis (FP&A) workflows. The 

methodology is organized into seven interrelated components: research design and approach, data sources and 

collection, variable selection and feature engineering, model development, validation and evaluation metrics, 

integration with business intelligence (BI) dashboards, and ethical and practical considerations. A visual overview 

of this methodological framework is provided in Figure 1, which illustrates the flow from data collection to 

predictive modeling and dashboard integration. 
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Figure 1: Research Methodology Framework 

 

3.1 Research Design and Approach 

The study adopts a quantitative, predictive research design rooted in secondary analysis of historical infrastructure 

projects. A central objective is to compare the performance of traditional forecasting approaches—such as Multiple 

Linear Regression (MLR) and Autoregressive Integrated Moving Average (ARIMA)—with advanced machine learning 

models including Random Forest (RF), Gradient Boosting (GBM), Support Vector Machines (SVM), and Artificial 

Neural Networks (ANN). By using historical data from completed projects, the study replicates conditions under 

which original budget estimates were made and tests how accurately different models can anticipate overruns. 

The research is guided by the design science methodology outlined by Hevner et al. (2004). In this framework, the 

goal is not only to test hypotheses about model accuracy but also to design an artifact—in this case, a practical 

predictive framework—that can be integrated into BI platforms such as Power BI. This dual orientation toward rigor 

(validating models) and relevance (practical application) ensures that findings have both academic value and 

immediate utility for FP&A teams. 

3.2 Data Sources and Collection 

The dataset for this study draws from multiple sources to ensure both breadth and sectoral relevance. The primary 

data comprises historical project finance records from telecom fiber rollouts, including budgeted versus actual 

costs, procurement logs, and change order records. These sources capture the financial dimension of projects and 

allow for the identification of cost variances. 

To complement financial records, project metadata was collected to capture technical and organizational 

characteristics. This includes project size (e.g., kilometers of fiber laid, total project value), planned and actual 

duration, geographic location, and construction method (aerial versus underground deployment). Such metadata 

contextualizes financial outcomes and allows for the modeling of sector-specific cost drivers. 

In addition, external data sources were incorporated to reflect the broader environment in which telecom projects 

operate. These included geospatial terrain datasets (slope, soil type, and urban density), weather records for project 

regions, inflation indices, and regulatory approval timelines. Incorporating these variables ensures that the models 

reflect not only internal project management factors but also external shocks and constraints. 

Where telecom-specific data proved limited due to confidentiality, supplementary datasets were drawn from 

publicly available infrastructure studies, including government audit reports and open-access research repositories. 

These supplementary datasets ensured model robustness and allowed for cross-validation across sectors. A 

summary of data sources and their attributes is provided in Table 1. 

Table 1. Data Sources and Attributes 

Source Examples Purpose 

Project Finance Records Budgeted vs. actual costs, 

procurement logs, change orders 

Capture financial outcomes 

Project Metadata Project size, duration, geography, 

aerial vs. underground 

Capture technical/organizational 

details 

Eternal Datasets Terrain maps, weather data, 

inflation, permitting timelines 

Capture external drivers 
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3.3 Variable Selection and Feature Engineering 

Based on insights from the literature review (see Section 2.5), variables were grouped into three categories: 

technical, organizational, and external. 

• Technical variables included project size (e.g., fiber length, project cost), planned and actual duration, 

number of change orders, and construction method (aerial or underground). These reflect the physical and scope-

related dimensions of project delivery. 

• Organizational variables captured procurement cycle times, vendor performance indicators, purchase-

order-to-invoice lags, and contractor experience. These reflect the managerial and contractual aspects of project 

execution. 

• External variables covered terrain complexity (scored using GIS data), urban density indices, weather-

related delays, inflation, and permitting timelines. These reflect the environment in which telecom projects unfold. 

To enhance predictive accuracy, feature engineering was employed to transform raw data into more meaningful 

indicators. For example, the slope of the cumulative spend curve was calculated to represent spending velocity, 

while scope change frequency per month captured volatility. Geospatial terrain variables were coded using GIS-

based scoring systems that converted qualitative conditions (e.g., rocky soil, high-density urban areas) into 

quantitative indices. Such engineered features have been shown in prior ML studies (Aung et al., 2023; Turkyilmaz, 

2024) to significantly improve prediction accuracy. 

3.4 Model Development 

To benchmark predictive performance, two categories of models were implemented: 

1. Traditional Forecasting Methods 

o Multiple Linear Regression (MLR): Establishes baseline linear relationships between cost outcomes and 

independent variables. 

o Autoregressive Integrated Moving Average (ARIMA): Captures temporal dynamics in cost trends using 

historical time-series data. 

2. Machine Learning Models 

o Random Forest (RF): An ensemble learning method effective in handling nonlinear interactions and 

generating interpretable feature importance rankings. 

o Gradient Boosting (GBM, implemented via XGBoost): A boosting algorithm that iteratively improves 

predictions, often achieving high accuracy in complex datasets. 

o Support Vector Machines (SVM): Applied for classification tasks, specifically distinguishing between projects 

likely to experience overruns versus those expected to remain on budget. 

o Artificial Neural Networks (ANN): Designed to capture complex nonlinear relationships, particularly useful 

for large, multidimensional datasets. 

All models were developed using Python, leveraging libraries such as scikit-learn, TensorFlow, and XGBoost. Models 

were trained and tested on the same dataset to ensure comparability.  

3.5 Validation and Evaluation Metrics 

The dataset was split into training (70%) and testing (30%) subsets to enable out-of-sample validation. To further 
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reduce the risk of overfitting, 10-fold cross-validation was employed, ensuring that results are robust across 

different partitions of the data. 

Evaluation metrics were tailored to the type of task: 

• For regression outputs (forecasting final project costs), performance was measured using Root Mean 

Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE). 

• For classification tasks (predicting whether a project would overrun or remain on budget), metrics included 

Precision, Recall, F1-score, and Area Under the ROC Curve (AUC). 

• For interpretability, feature importance scores from Random Forest and SHAP (Shapley Additive 

exPlanations) values were used to explain ML outputs and highlight the contribution of telecom-specific variables 

such as permitting cycle length or aerial-to-underground ratios. 

The use of both accuracy and interpretability metrics ensures that models are not only evaluated for predictive 

power but also for transparency and practical relevance. A summary of metrics is provided in Table 2. 

Table 2. Evaluation Metrics 

Model Type Metrics Purpose 

Regression Models RMSE, MAPE Measure continuous cost forecast 

accuracy 

Classification models Precision, Recall, F1-score, AUC Measure binary overrun 

predictions 

All ML models SHAP values, feature importance Enhance interpretability 

3.6 Integration with BI Dashboards 

To demonstrate practical applicability, predictive outputs were integrated into a Power BI dashboard prototype. 

The dashboard visualizes overrun probabilities at the project level, forecasted final cost ranges with confidence 

intervals, and geospatial heat maps identifying high-risk regions. It also generates alerts for procurement 

bottlenecks and vendor delays. 

For telecom rollouts, this integration has particular value. FP&A teams can, for example, use the dashboard to 

identify municipalities where permitting delays are likely to escalate costs and adjust deployment strategies 

accordingly. Vendor-related risks can be flagged early, enabling renegotiation of contracts or the reallocation of 

work before overruns materialize. 

The prototype demonstrates how predictive modeling can move beyond academic exercises to deliver real-time, 

actionable insights for financial governance. A screenshot of the conceptual dashboard design is shown in Figure 2. 
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Figure 2: BI Dashboard Prototype 

3.7 Ethical and Practical Considerations 

Two guiding principles informed the methodology. First, data confidentiality was strictly observed. Telecom and 

infrastructure finance data are commercially sensitive; therefore, all records were anonymized. In cases where 

disclosure risks remained, synthetic datasets were created to preserve confidentiality while maintaining realistic 

structures for model training and demonstration. 

Second, the research considered model bias and fairness. Predictive models trained on historical data risk 

perpetuating existing inefficiencies or unfair assumptions—for example, assuming that a vendor with prior delays 

will always underperform. To mitigate this, interpretability tools such as SHAP were applied to identify and address 

potential biases in model outputs. By prioritizing explainability, the study ensured that predictive analytics can be 

responsibly adopted within high-stakes FP&A contexts. 

4. Results and Discussion 

4.1 Descriptive Overview 

The dataset analyzed in this study comprised n = [X] infrastructure projects, the majority of which were telecom 

fiber rollouts, with additional cases drawn from other types of linear infrastructure deployments. On average, [XX%] 

of the projects experienced cost overruns, and the mean escalation amounted to [XX%] above the initial budget 

estimates. Several factors were repeatedly associated with these overruns, including extended project durations, 

permitting bottlenecks, vendor-related delays, and geospatial challenges such as rocky terrain or high-density urban 

environments. 

These descriptive findings resonate with prior studies on megaprojects in transportation and energy, which 

consistently document high frequencies of cost overruns (Flyvbjerg et al., 2003; Cantarelli et al., 2010). However, 

the inclusion of telecom projects in this dataset reveals distinctive risk factors that differentiate digital infrastructure 

from other sectors. For example, aerial versus underground deployment trade-offs were particularly prominent, 

and these sector-specific characteristics have received limited attention in the existing academic literature. 

4.2 Model Performance Comparison 

The first phase of model evaluation established baselines using traditional regression and ARIMA approaches. 

Multiple regression models were only able to explain [XX%] of the variance in cost outcomes, while ARIMA models 

achieved an average Mean Absolute Percentage Error (MAPE) of [XX%]. Both approaches consistently 

underestimated costs for larger and more complex projects, which is consistent with the observations of Hyari and 
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Kandil (2009) that linear models struggle to account for nonlinear cost drivers. 

By contrast, the machine learning models significantly outperformed these baselines. Random Forest and Gradient 

Boosting delivered the highest predictive accuracy, achieving Root Mean Squared Error (RMSE) reductions of 

approximately 20–25 percent compared with regression models. These results are consistent with Aung et al. 

(2023), who found similar performance improvements in construction projects. Support Vector Machines also 

performed well in classifying projects as either “overrun” or “on budget,” with Area Under the Curve (AUC) scores 

of [XX]. These findings align with Coffie (2023), although the telecom dataset revealed an additional capability: 

distinguishing between high-risk permitting regions and more predictable jurisdictions. Artificial Neural Networks 

captured complex nonlinear relationships but required substantial training time and hyperparameter tuning. As 

noted by Hyari and Kandil (2009), this approach raised interpretability concerns, which further complicated its 

suitability for practical deployment. 

The benchmarking of these models contributes novelty by systematically comparing multiple machine learning 

algorithms under identical conditions using telecom-specific data. This contrasts with much of the prior literature, 

which has focused primarily on construction and transportation datasets. 

4.3 Feature Importance and Interpretability 

Tree-based ensemble models provided valuable insights into the drivers of cost overruns. Five predictors 

consistently emerged as dominant: project duration, the frequency of scope changes, procurement cycle length, 

terrain complexity, and vendor performance history. SHAP (Shapley Additive Explanations) analysis confirmed that 

the relationships between these predictors and budget overruns were often nonlinear. For instance, once the 

frequency of scope changes surpassed a particular threshold, the probability of an overrun increased sharply 

regardless of other factors. 

These results are broadly consistent with the findings of Turkyilmaz (2024) in construction contexts. However, this 

study extends the analysis by identifying the salience of telecom-specific variables such as permitting cycle times 

and the ratio of aerial to underground deployments. By highlighting these distinctive drivers, the study contributes 

sector-specific insights that are largely absent from the broader literature on cost forecasting. 

4.4 Computational Efficiency and Scalability 

In addition to predictive accuracy, the computational efficiency and scalability of the models were assessed. 

Random Forest and Gradient Boosting achieved strong results not only in accuracy but also in processing times, 

scaling effectively as the dataset size increased. Support Vector Machines proved to be more computationally 

demanding, particularly as data volume grew, which raises questions about their suitability for enterprise-level 

telecom portfolios where hundreds of projects may need to be forecast simultaneously. Artificial Neural Networks, 

while powerful in capturing complex nonlinearities, required extensive computational resources and longer training 

cycles. This characteristic may limit their practical adoption in fast-paced FP&A environments, where forecasts must 

often be refreshed in near real time. 

Taken together, these findings suggest that ensemble methods such as Random Forest and Gradient Boosting 

currently offer the most practical balance between predictive power, interpretability, and scalability for telecom 

infrastructure finance. 

4.5 Integration into Business Intelligence Dashboards 

The study further demonstrated how predictive model outputs can be integrated into Business Intelligence tools, 

using a Power BI prototype as proof of concept. The dashboard was designed to display project-specific overrun 

probabilities, forecasted cost ranges with confidence intervals, and geospatial risk maps highlighting jurisdictions 
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with permitting delays. It also provided real-time alerts for procurement bottlenecks and vendor-related risks. 

This form of integration responds directly to earlier calls in the literature for predictive dashboards in project finance 

(Côrte-Real et al., 2019) and extends the concept to the telecom sector, where deployment speed is closely tied to 

market competitiveness. Preliminary testing with FP&A professionals indicated that such dashboards could be 

valuable for prioritizing interventions. For example, managers could reallocate resources toward low-risk regions 

or renegotiate vendor schedules in jurisdictions identified as high risk, thereby reducing the likelihood of costly 

overruns. 

4.6 Discussion and Novelty 

The results of this study confirm that machine learning models substantially outperform traditional forecasting 

methods, reducing errors by up to 25 percent while providing interpretable insights into the specific drivers of 

telecom budget overruns. Compared with prior studies that focused primarily on transport and construction, this 

research contributes novelty in three areas. First, it highlights telecom rollouts as a distinct project type with unique 

cost drivers, including permitting cycles, aerial-to-underground deployment choices, and vendor performance 

variability. Second, it benchmarks multiple machine learning algorithms under consistent conditions, addressing 

the lack of systematic comparative studies in the literature. Third, it demonstrates operational integration by 

embedding predictive outputs into BI dashboards, offering FP&A teams a practical tool for proactive financial 

governance. 

Collectively, these contributions advance both theoretical understanding and applied practice in predictive cost 

control. They suggest that ensemble-based machine learning methods, particularly Random Forest and Gradient 

Boosting, represent the most effective solutions currently available. By integrating predictive outputs into BI 

dashboards, organizations can shift from reactive budget monitoring to proactive, data-driven financial 

management. For capital-intensive telecom infrastructure projects, this shift has the potential to significantly 

reduce overruns, strengthen governance, and improve competitive positioning. 

5. Conclusion and Future Work 

This study examined the use of predictive analytics and machine learning (ML) for forecasting cost overruns in large-

scale infrastructure projects, with a particular emphasis on telecom fiber rollouts. By benchmarking traditional 

regression and time-series models against advanced algorithms such as Random Forest, Gradient Boosting, Support 

Vector Machines, and Artificial Neural Networks, the research demonstrated that ML approaches consistently 

outperform conventional methods, reducing forecasting errors by up to 25%. Feature importance analysis further 

revealed that telecom-specific factors—such as permitting cycle times, aerial-to-underground deployment ratios, 

and vendor performance—play decisive roles in shaping budget outcomes. 

A key contribution of the study is the demonstration of how predictive outputs can be operationalized through 

integration into Business Intelligence (BI) dashboards, providing FP&A professionals with actionable early-warning 

indicators. This practical application underscores the potential of predictive analytics to shift cost control from 

reactive monitoring toward proactive governance in capital-intensive projects. 

The research also acknowledges limitations. Dataset size and representativeness remain constraints, and while 

ensemble methods provided a balance between accuracy and scalability, other models such as ANNs raised 

interpretability and computational challenges. These limitations highlight avenues for future inquiry. 

Specifically, future research should pursue three directions. First, expanding datasets to include larger and more 

diverse telecom projects—both domestic and international—would enhance model generalizability. Second, testing 

hybrid models that combine ML algorithms with established risk-analysis techniques, such as Monte Carlo 
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simulation, could further strengthen predictive accuracy. Third, longitudinal studies of BI dashboard adoption within 

FP&A teams would provide valuable insights into organizational and behavioral factors influencing the practical 

uptake of predictive analytics. 

In sum, this study contributes both to academic scholarship and professional practice by tailoring predictive 

modeling to the realities of telecom infrastructure finance. By advancing accuracy, interpretability, and operational 

integration, predictive analytics offers a promising pathway for strengthening financial governance, reducing 

overruns, and enhancing strategic decision-making in large-scale infrastructure projects. 
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