AMERICAN ACADEMIC PUBLISHER

. AMERICAN
JL * ACADEMIC

Tl g *
J o pusuisin

OPENACCESS JOURNAL

>

INTERNATIONAL JOURNAL OF DATA SCIENCE AND MACHINE LEARNING (ISSN: 2692-5141)

Volume 05, Issue 02, 2025, pages 325-338
Published Date: - 01-12-2025

Synthesizing Reactive And Imperative Performance In Modern
Java Backends: A Comprehensive Analysis Of Spring Webflux,
Spring MVC, And SLA-Aware API Design

Elena Rossi
Department of Software Systems, University of Zurich, Zurich, Switzerland

ABSTRACT
Background:

The rapid growth of API-driven architectures, microservices, and cloud-native deployments has made backend
performance a first-class concern, particularly in domains such as financial services where latency, throughput, and
availability are tightly bound to contractual service-level agreements (SLAs). Java ecosystems, historically grounded
in thread-per-request designs, are now experimenting with reactive programming models such as Spring WebFlux,
non-blocking persistence with R2DBC, and emerging concurrency constructs such as virtual threads, creating a
complex decision landscape for architects (Hochbergs, 2017; Arpaci-Dusseau & Arpaci-Dusseau, 2018; Pressler &
Bateman, 2023).

Objective:

This article develops a deeply elaborated, publication-ready conceptual synthesis of performance characteristics,
architectural trade-offs, and testing strategies for reactive and non-reactive Java backends. It draws strictly on
existing work that compares Spring WebFlux to Spring MVC and related stacks, investigates load and performance
testing techniques, and proposes priority-aware APls in SLA-constrained settings (Priority-Aware Reactive APlIs,
2025; Dahlin, 2020; Nordlund & Nordstrom, 2022; Ferreira, 2022; Dorado, 2019; SpringBoot MVC vs WebFlux,
2025).

Methods:

Using a qualitative theory-building approach, the study performs a structured narrative review of peer-reviewed
theses, conference papers, industrial blog posts, and vendor documentation on reactive programming,
concurrency, and performance testing. It then constructs an analytical model that contrasts reactive WebFlux,
imperative Spring MVC, and non-blocking data access approaches (JDBC versus R2DBC), integrating insights from
controlled experiments and “lessons learned” microservice case studies (Sim et al., 2019; Emanovikov, n.d.;
Minkowski, 2019; Munhoz, 2020). Finally, it synthesizes a conceptual architecture for priority-aware reactive APls
and a set of performance-testing and tuning guidelines for WebFlux-based systems under realistic load patterns
(Gatheca, 2021; Moldstud, 2025; Java Code Geeks, 2025).

Results:

The synthesis shows that WebFlux excels under highly concurrent, 1/0-bound loads, particularly when paired with
non-blocking data access and carefully designed backpressure and error handling; however, empirical studies

https://www.academicpublishers.org/journals/index.php/ijdsml 325

AMERICAN ACADEMIC PUBLISHER

consistently reveal that reactive stacks do not unconditionally outperform well-designed blocking MVC services,
especially when the database layer remains synchronous (Dahlin, 2020; Dorado, 2019; Minkowski, 2019).
Microbenchmarking work demonstrates that R2DBC can reduce response times for certain patterns but introduces
overhead in others, making performance highly workload-dependent (Emanovikov, n.d.). Case studies routinely
report a significant increase in conceptual complexity and development cost for reactive services, even when
runtime metrics improve (Hochbergs, 2017; Ferreira, 2022; Piyumal, 2024).

Conclusion:

Reactive programming with Spring WebFlux should be viewed as a specialized tool rather than a universal
replacement for Spring MVC. For SLA-tiered systems in finance and other latency-sensitive domains, a portfolio
strategy that combines reactive APls, optimized imperative services, and emerging concurrency mechanisms offers
a more robust path than reactive absolutism (Priority-Aware Reactive APls, 2025; Nordlund & Nordstrém, 2022;
Escoffier & Finnigan, 2018). The proposed synthesis offers practitioners and researchers a coherent framework for
choosing technology stacks, designing SLA-aware reactive architectures, and constructing rigorous performance-
testing regimes for modern Java backends.

KEYWORDS

Spring WebFlux; Spring MVC; reactive programming; R2DBC vs JDBC; performance testing; SLA-aware APls; Java
concurrency.

INTRODUCTION

Over the last decade, backend development in Java has undergone a fundamental transformation. Where
traditional enterprise systems were dominated by monolithic applications deployed on application servers that
processed relatively predictable workloads, contemporary systems are increasingly decomposed into
microservices, exposed to volatile external traffic, and orchestrated on cloud platforms with elastic but finite
resources (Hochbergs, 2017; Ferreira, 2022). The rise of real-time analytics, mobile clients, and partner integrations
has dramatically increased concurrency, making performance and scalability central design concerns rather than
afterthoughts.

Within this broader shift, three intertwined forces have reshaped the Java server-side landscape. The first is the
maturation of microservice architecture as a common pattern for structuring complex systems, promoting fine-
grained services, independent deployment, and API-first design (Sim et al., 2019; Ferreira, 2022). The second is the
emergence of reactive programming models, described by the Reactive Manifesto as systems that are responsive,
resilient, elastic, and message-driven, implemented in Java via frameworks such as RxJava, Akka Streams, and
eventually Spring WebFlux and Reactor (Christensen & Nurkiewicz, 2016; Escoffier & Finnigan, 2018; Kalim, 2023).
The third is the evolution of concurrency primitives in the Java platform itself, moving from classic thread-per-
request paradigms to lightweight asynchronous constructs and, more recently, virtual threads (Oracle, 2023;
Pressler & Bateman, 2023).

Spring, as one of the dominant frameworks in the Java ecosystem, sits at the convergence of these forces. Spring
MVC represents a conventional synchronous, servlet-based model in which each incoming HTTP request is handled
by a dedicated thread from a pool; application code often performs blocking operations such as database queries
using JDBC; and scalability is achieved primarily through horizontal scaling and careful pool sizing (Spring MVC vs
Spring WebFlux, 2024). Spring WebFlux, introduced with Spring Framework 5, embodies a reactive, non-blocking

model built on Project Reactor’s Mono and Flux types, where a small number of event-loop threads orchestrate
|

https://www.academicpublishers.org/journals/index.php/ijdsml 326

AMERICAN ACADEMIC PUBLISHER

asynchronous processing and backpressure is a first-class concern (Piyumal, 2024; Java Code Geeks, 2025).

The appeal of WebFlux, particularly in performance-sensitive domains, is rooted in the intuition that non-blocking
I/0 and efficient event loops can serve more concurrent requests with fewer threads, thus improving throughput
and potentially reducing latency under load (Gatheca, 2021; Moldstud, 2025). Several blog-based benchmarks and
experimental studies support this intuition under specific conditions, showing that reactive services maintain more
stable response times as concurrency increases compared to their Spring MVC counterparts (Minkowski, 2019;
Dorado, 2019; Munhoz, 2020; SpringBoot MVC vs WebFlux, 2025). Yet these same studies often reveal surprising
nuances: WebFlux can show higher CPU utilization in some scenarios, performance advantages can vanish when
the database layer remains blocking through JDBC, and developer productivity can suffer due to the unfamiliarity
and complexity of reactive chains (Dahlin, 2020; Hochbergs, 2017; Ferreira, 2022).

At the same time, financial services and other heavily regulated industries have been experimenting with priority-
aware APls that differentiate traffic into SLA tiers—commonly labeled Gold, Silver, and Bronze—based on business
criticality and contractual obligations (Priority-Aware Reactive APIs, 2025). In such systems, pure throughput is not
the only metric of interest: the architecture must ensure that high-priority operations, such as payment
authorization or risk checks, are shielded from noisy neighbors, while lower-priority workloads can be throttled,
degraded, or delayed under stress (Priority-Aware Reactive APls, 2025). Reactive architectures promise more fine-
grained control over backpressure and flow control, potentially making them attractive for SLA-aware designs;
however, whether and how these benefits materialize in real deployments remains an open question.

The performance landscape is further complicated by the data-access layer. Traditional Spring MVC applications
use JDBC, which exposes a blocking model: threads wait while database queries complete (Dahlin, 2020). Reactive
stacks rely on R2DBC or similar non-blocking drivers, enabling I/O operations to be represented as reactive streams;
but non-blocking database access comes with its own challenges, including driver maturity, transaction semantics,
and context propagation (Emanovikov, n.d.). Benchmarking work has shown that R2DBC can outperform JDBC in
specific high-concurrency scenarios, but also that the gains are not uniform, and misconfigured R2DBC use can
degrade performance instead of improving it (Emanovikov, n.d.).

In parallel, infrastructure for performance testing and load generation has matured. Tools such as Gatling and
JMeter, coupled with cloud-native observability stacks, make it easier to design, execute, and analyze load tests
that mimic realistic patterns (Gatling, 2023; Gatheca, 2021). Dedicated guidance has emerged around performance
testing strategies for reactive applications, emphasizing not just peak throughput but also request distribution,
backpressure behavior, and resource saturation patterns (Moldstud, 2025). Yet, many organizations still rely on
simplistic benchmarks that fail to capture the richness of reactive behavior, leading to premature or misguided
technology choices.

Against this backdrop, the present article addresses a set of interrelated questions. Under what conditions do
reactive Spring WebFlux applications actually deliver superior performance compared to Spring MVC? How do data-
access choices (JDBC versus R2DBC) influence this comparison? What are the implications of reactive programming
for developer experience, maintainability, and operational complexity? And how can architects design reactive APIs
that are not only fast but also SLA-aware, especially in domains like financial services where traffic is heterogeneous
and failure modes are complex (Priority-Aware Reactive APIs, 2025; Sim et al., 2019; Munhoz, 2020)?

Existing literature provides partial answers. Case studies on applying reactive systems in microservices
environments identify both measurable performance benefits and significant challenges around debugging, error
handling, and mental models (Sim et al., 2019; Hochbergs, 2017; Ferreira, 2022). Benchmarks comparing Spring
MVC and WebFlux in particular scenarios—such as JWT verification with MySQL queries or Elasticsearch-backed

https://www.academicpublishers.org/journals/index.php/ijdsml 327

AMERICAN ACADEMIC PUBLISHER

search APIs—demonstrate that WebFlux can handle higher levels of concurrency but sometimes at the cost of more
complicated code paths (Minkowski, 2019; SpringBoot MVC vs WebFlux, 2025). Conceptual work on concurrency
and operating systems clarifies why non-blocking I/O and event loops behave differently under contention
compared to thread-per-request models (Oracle, 2023; Arpaci-Dusseau & Arpaci-Dusseau, 2018). Yet, these
contributions are often siloed, leaving practitioners to piece together a coherent picture.

The contribution of this article is to weave these disparate strands into a comprehensive, theoretically grounded
synthesis. Specifically, it provides:

1. A detailed conceptual comparison of reactive and imperative Java backends, with particular attention to
Spring WebFlux, Spring MVC, and the interaction between application-level concurrency and data-access strategies
(Dahlin, 2020; Emanovikov, n.d.; Dorado, 2019).

2. An integrated reading of microservice case studies and performance benchmarks, extracting cross-cutting
lessons about when reactive architectures pay off, and when they do not (Sim et al., 2019; Hochbergs, 2017;
Ferreira, 2022; Minkowski, 2019; Munhoz, 2020; SpringBoot MVC vs WebFlux, 2025).

3. A conceptual framework for SLA-aware reactive API design that builds on priority-aware WebFlux proposals
and aligns them with realistic load-testing and tuning practices (Priority-Aware Reactive APls, 2025; Gatheca, 2021;
Moldstud, 2025; Java Code Geeks, 2025).

By staying strictly within the boundaries of existing references, the article avoids speculative claims while still
developing a richly elaborated theoretical structure. This structure can guide both academic work—for example, in
designing future experiments or formal models of reactive behavior—and industrial practice, where teams must
make high-stakes technology choices under uncertainty.

METHODOLOGY

The methodological orientation of this article is qualitative, interpretive, and synthesis-oriented. Rather than
introducing new empirical data, it constructs a theory-backed narrative grounded in carefully selected primary and
secondary sources. This choice reflects the nature of the input data, which consists primarily of empirical studies,
master’s theses, technical blog posts, and vendor documentation, each offering partial insights into the reactive
versus imperative debate.

The methodology unfolds along three intertwined lines:

First, a structured narrative review of the provided references is conducted. Each reference is analyzed for its
contribution along several dimensions:

° its primary focus (for example, Spring WebFlux performance, R2DBC versus JDBC, microservice architecture,
concurrency at the OS level);

° its methodological stance (controlled experiment, benchmark, case study, conceptual exposition);
° its context (technology stack, deployment environment, workload characteristics); and
° its reported outcomes (performance metrics, qualitative lessons learned, caveats, and limitations).

For instance, Dahlin’s evaluation of Spring WebFlux with a focus on SQL features is classified as a thesis-driven
empirical study that examines the tension between non-blocking web APIs and inherently blocking relational data
stores (Dahlin, 2020). Ferreira’s work on reactive microservices is treated as an experiment that probes the
development and operational challenges of moving to reactive architectures (Ferreira, 2022). Medium and blog
posts such as those by Minkowski, Dorado, Munhoz, and Piyumal are interpreted as practitioner reports that, while
|

https://www.academicpublishers.org/journals/index.php/ijdsml 328

AMERICAN ACADEMIC PUBLISHER

not peer-reviewed, provide grounded insights into real-world performance concerns and engineering trade-offs
(Minkowski, 2019; Dorado, 2019; Munhoz, 2020; Piyumal, 2024).

Second, an analytical comparison framework is developed that explicitly relates reactive and imperative models to
underlying concurrency theory. Drawing on Oracle’s Java concurrency tutorial and the operating-systems
perspective articulated by Arpaci-Dusseau and Arpaci-Dusseau, the study maps thread-per-request designs, event-
loop-based reactive designs, and virtual-thread-based designs onto basic abstractions such as threads, queues,
scheduling, and blocking states (Oracle, 2023; Arpaci-Dusseau & Arpaci-Dusseau, 2018). This theoretical backbone
enables a consistent interpretation of empirical results. For example, when Dorado reports differences between
Spring MVC and WebFlux performance in a given scenario, those differences are understood in terms of how each
model schedules tasks, how it handles blocking, and how it responds to queuing delays under load (Dorado, 2019).

Third, a conceptual model of SLA-aware reactive API architecture is synthesized. Building on the explicit description
of priority-aware reactive APIs in financial services and on generic guidance for reactive systems from Escoffier and
Finnigan, Kalim, and Java Code Geeks, the study constructs an architectural layering that incorporates reactive
flows, priority queues, backpressure mechanisms, and load-testing feedback loops (Priority-Aware Reactive APIs,
2025; Escoffier & Finnigan, 2018; Kalim, 2023; Java Code Geeks, 2025). This model is not presented as a formal
specification but as a richly detailed narrative that architects can adapt to their own contexts.

Throughout, the analysis adheres to two constraints. First, it remains strictly within the set of references provided,
avoiding the introduction of additional sources. Second, it refrains from making numerical claims that are not
directly supported by the referenced work; instead, it describes performance relationships qualitatively, such as
“WebFlux maintained lower latency under increasing concurrency in the reported benchmark” (Minkowski, 2019;
Munhoz, 2020; SpringBoot MVC vs WebFlux, 2025).

This methodology is particularly suitable for a field where technologies evolve rapidly and scholarly coverage lags
practitioner experimentation. By systematically organizing and interpreting existing evidence, the article provides
a foundation for more targeted empirical research and more informed industrial decision-making.

RESULTS
Conceptualizing Concurrency: From Threads to Reactive Streams

The first major result of the synthesis is a clarified conceptual understanding of how concurrency is realized in the
different architectures under discussion. Oracle’s Java concurrency lesson presents a classical view of threads as
independent paths of execution that share memory and must be synchronized to avoid race conditions (Oracle,
2023). In typical server applications, each incoming request is assigned to a thread from a pool; the thread processes
the request, invokes blocking I/O operations such as JDBC calls, and eventually returns a response. The underlying
operating system schedules threads on CPU cores, and blocking calls suspend threads, enabling others to run
(Arpaci-Dusseau & Arpaci-Dusseau, 2018).

Spring MVC inherits this paradigm, using container-managed thread pools and synchronous controllers. Its
performance characteristics are thus shaped by thread pool sizes, blocking behavior, and the time each thread
spends waiting on network or disk I/O (Dorado, 2019; Spring MVC vs Spring WebFlux, 2024). Under low to moderate
concurrency, this model is simple and effective; as concurrency grows, however, the number of simultaneous
waiting threads can inflate memory usage, increase context-switch overhead, and exacerbate queuing delays
(Munhoz, 2020).

Reactive programming, by contrast, treats concurrency as a matter of composing asynchronous events rather than
managing large numbers of threads directly. RxJava introduced a model in which observables emit items over time,
|

https://www.academicpublishers.org/journals/index.php/ijdsml 329

AMERICAN ACADEMIC PUBLISHER

and observers react to them using transformation operators (Christensen & Nurkiewicz, 2016). Reactor, the
foundation of Spring WebFlux, embraces a similar model but emphasizes backpressure and a strong type distinction
between single-value Mono and multi-value Flux (Piyumal, 2024; Java Code Geeks, 2025). Instead of dedicating one
thread per request, WebFlux uses a small set of event-loop threads to process many requests, suspending and
resuming them by registering callbacks that are invoked when asynchronous operations complete (Piyumal, 2024).

Escoffier and Finnigan describe reactive systems as those that leverage asynchronous message passing, non-
blocking 1/0, and event-driven execution to maintain responsiveness under variable load (Escoffier & Finnigan,
2018). In this view, a reactive service is not simply “fast” but structurally designed to handle backpressure,
propagate failure signals, and scale elastically across cores and nodes. Akka’s documentation similarly emphasizes
that actor-based systems, while conceptually different from Reactor streams, share the goal of isolating state and
communicating through messages, thereby facilitating resilience and concurrency (Akka Documentation, 2023).

The introduction of virtual threads via JEP 425 adds a third paradigm. Virtual threads are lightweight threads
managed by the Java runtime that can be parked and resumed with dramatically lower overhead than platform
threads, making it feasible to maintain large numbers of blocking operations without incurring the same resource
costs (Pressler & Bateman, 2023). Although the references provided focus primarily on reactive WebFlux and classic
MVC, the concurrency theory underlying virtual threads is deeply related: they aim to decouple the number of
logical threads from the number of carrier threads, allowing blocking code to behave more like asynchronous code
in terms of scalability, at least under some conditions (Oracle, 2023; Arpaci-Dusseau & Arpaci-Dusseau, 2018;
Pressler & Bateman, 2023).

The implications of these models for performance are profound. Under heavy load, thread-per-request designs risk
saturation when each thread spends substantial time waiting; event-loop reactive designs avoid this by multiplexing
many logical flows onto few threads but require careful non-blocking discipline; virtual threads attempt to gain
some of the benefits of multiplexing while preserving the imperative programming style. This conceptual frame sets
the context for interpreting the empirical studies in the references.

Empirical Comparisons: Spring MVC versus Spring WebFlux

Across the referenced empirical work and practitioner benchmarks, a consistent pattern emerges: reactive WebFlux
can outperform Spring MVC under high concurrency and I/O-bound workloads, but this advantage is contingent on
several factors and is often offset by increased complexity (Minkowski, 2019; Dorado, 2019; Munhoz, 2020;
SpringBoot MVC vs WebFlux, 2025).

Minkowski’s performance comparison between Spring MVC and WebFlux with Elasticsearch focuses on a search
API scenario, where requests query an Elasticsearch cluster and return paginated results (Minkowski, 2019). The
study reports that, when concurrency is low, there is little difference between MVC and WebFlux; latency and
throughput are comparable because neither system is resource-saturated. However, as the number of concurrent
clients increases, WebFlux maintains lower average latency and sustains higher throughput, largely because it can
handle more simultaneous requests without creating additional threads. Since Elasticsearch itself is a network
service, the calls are I/O-bound and naturally benefit from non-blocking behavior.

Dorado’s blog on reactive versus non-reactive Spring performance presents similar observations but emphasizes
how subtle differences in configuration can affect outcomes (Dorado, 2019). In his examples, when reactive
endpoints are not carefully tuned or when blocking calls leak into the reactive pipeline, the expected benefits can
be undermined. Dorado argues that reactive systems require a holistic approach in which all layers—controller,
service, repository, and external integrations—are aligned with non-blocking principles. Otherwise, the event loops

that power WebFlux can become clogged by blocking operations, eliminating the concurrency advantage and
|

https://www.academicpublishers.org/journals/index.php/ijdsml 330

AMERICAN ACADEMIC PUBLISHER

sometimes causing worse performance due to overhead.

Munhoz’'s comparison of APl performance across Spring MVC, WebFlux, and Go broadens the context by
introducing a non-Java baseline (Munhoz, 2020). While the precise metrics are tied to specific implementation
details, the high-level pattern is that WebFlux, when properly configured, scales better than MVC in handling
concurrent requests, but the Go implementation—thanks to its own lightweight concurrency primitives—delivers
strong performance as well. This reinforces the idea that architecture and runtime model, rather than framework
branding, determine scalability.

A more domain-specific piece is the Medium article on SpringBoot MVC versus WebFlux performance for JWT
verification and MySQL queries (SpringBoot MVC vs WebFlux, 2025). This scenario mixes CPU-bound work (JWT
verification) and I/0O-bound work (MySQL queries) in different proportions. The reported findings indicate that
WebFlux gains a clear edge when the workload is dominated by I/O-bound queries and when a reactive MySQL
driver such as R2DBC is used. When the database calls remain synchronous via JDBC, the advantage shrinks, because
the reactive pipeline still needs to bridge to blocking operations (SpringBoot MVC vs WebFlux, 2025).

Taken together, these studies suggest the following conceptual rule: WebFlux outperforms MVC most convincingly
when the workload is heavily I/0-bound, the downstream services support non-blocking interaction, and the system
faces high concurrency; when these conditions are not met, the advantage narrows or disappears, especially if the
non-blocking model is forced to interoperate with blocking components (Minkowski, 2019; Dorado, 2019; Munhoz,
2020; SpringBoot MVC vs WebFlux, 2025).

The Role of Persistence: R2DBC versus JDBC

Dahlin’s evaluation of Spring WebFlux with a focus on built-in SQL features addresses a critical point often neglected
in superficial discussions: the database is frequently the dominant factor in backend performance, and its
interaction with the web layer determines overall responsiveness (Dahlin, 2020). The thesis examines how SQL-
based persistence interacts with WebFlux, highlighting that Spring’s traditional JDBC support is fundamentally
blocking. When WebFlux controllers call repositories that execute JDBC operations, those calls must be executed
on dedicated blocking thread pools, undermining the end-to-end non-blocking model.

Emanovikov’s “Not So Fast” benchmark comparing R2DBC, JDBC, and Vert.x adds a nuanced perspective by showing
that non-blocking data access through R2DBC does not automatically outpace JDBC in all scenarios (Emanovikov,
n.d.). In some test cases, R2DBC demonstrates lower latency and better throughput under heavy concurrent load,
particularly when the database server is capable of handling many connections efficiently. In others, JDBC performs
similarly or better, especially when connection management overhead or driver maturity issues come into play.

These findings underscore that the data-access layer cannot be treated as a simple plug-and-play component in
reactive systems. A WebFlux application that depends heavily on JDBC effectively splits the concurrency model: the
HTTP layer is non-blocking, but the persistence layer is blocking, forcing the system to maintain separate thread
pools and to handle potentially complex interactions between event-loop threads and blocking worker threads
(Dahlin, 2020). This hybrid model can still yield benefits if the blocking phases are relatively short and concurrency
is moderate, but it falls short of the idealized “everything is non-blocking” vision.

From the perspective of SLA-aware design, the persistence layer has crucial implications. High-priority operations
often require strong consistency guarantees and complex transactional behavior. Implementing such behavior in
R2DBC may be more challenging than in mature JDBC stacks, at least until the ecosystem stabilizes. Architects
therefore face a trade-off: embrace R2DBC to align with WebFlux and unlock high-concurrency non-blocking
performance, or retain JDBC for transactional robustness and developer familiarity while accepting some degree of

https://www.academicpublishers.org/journals/index.php/ijdsml 331

AMERICAN ACADEMIC PUBLISHER

blocking and hybridization (Dahlin, 2020; Emanovikov, n.d.).
Lessons from Reactive Microservices Case Studies

Beyond raw performance metrics, several references provide insights into the developmental and operational
experience of reactive microservices. Sim and colleagues present “Lessons Learned in Applying Reactive System in
Microservices,” reflecting on the practical challenges encountered when adopting reactive paradigms in real-world
systems (Sim et al., 2019). They report that while reactive designs helped meet performance and scalability goals,
teams struggled with debugging asynchronous flows, reasoning about backpressure, and integrating legacy
components that were not designed with asynchrony in mind. The need for comprehensive monitoring and tracing
was particularly acute, because subtle misconfigurations could lead to silent performance degradation rather than
obvious failures.

Hochbergs’ master’s thesis on reactive programming and its effect on performance and the development process
similarly concludes that reactive approaches bring both benefits and costs (Hochbergs, 2017). On the one hand, the
thesis confirms that reactive systems can deliver improved scalability and responsiveness in certain benchmarks.
On the other, it documents increased cognitive load for developers, who must think in terms of streams, operators,
and eventual completion rather than simple call stacks. The thesis emphasizes that code readability and
maintainability are at risk when reactive constructs are used indiscriminately or without adequate training.

Ferreira’s master’s thesis on reactive microservices offers an experiment in building microservice architectures with
reactive technologies and evaluating their behavior (Ferreira, 2022). The work highlights that reactive microservices
perform well under high concurrency, but pipeline complexity and error-handling strategies become critical design
dimensions. The experiment reveals that naive designs can propagate errors and cancellations in unexpected ways,
even when performance appears satisfactory.

Collectively, these case studies contribute a crucial qualitative dimension: reactive programming is not merely a
runtime optimization technique but a different way of thinking about control flow, error propagation, and resource
management. This has significant implications for SLA-aware systems: it is not enough to design a theoretically
optimal priority-aware architecture if the development team cannot reliably maintain and evolve the codebase (Sim
et al., 2019; Hochbergs, 2017; Ferreira, 2022).

SLA-Aware Reactive APIs and Priority-Tiered Traffic

The article “Priority-Aware Reactive APIs: Leveraging Spring WebFlux for SLA-Tiered Traffic in Financial Services”
presents a domain-specific application of WebFlux to the problem of serving heterogeneous traffic with different
SLAs (Priority-Aware Reactive APIs, 2025). In this model, API consumers are assigned to tiers—typically Gold, Silver,
and Bronze—depending on their contractual requirements and business importance. Gold-tier clients might be
high-value institutional partners whose operations require minimal latency and strong guarantees; Bronze-tier
clients might be low-priority batch users or experimental workloads.

The proposal uses WebFlux’s flexible scheduling and stream composition capabilities to enforce priority at the
application layer rather than solely relying on network-level infrastructure. For example, requests may be classified
at the edge and routed to dedicated reactive pipelines with tier-specific concurrency limits, backpressure strategies,
and timeouts. Gold-tier pipelines are configured to shed load aggressively when resource contention threatens
latency guarantees, ensuring that high-priority requests continue to be handled promptly even under stress.
Bronze-tier pipelines, by contrast, may accept substantial delays or be temporarily suspended when the system is
saturated (Priority-Aware Reactive APls, 2025).

This priority-aware approach aligns with the theoretical properties of reactive systems described by Escoffier and
|

https://www.academicpublishers.org/journals/index.php/ijdsml 332

AMERICAN ACADEMIC PUBLISHER

Finnigan, who emphasize that reactive designs enable fine-grained flow control and resilience patterns via
asynchronous message passing and backpressure-aware operators (Escoffier & Finnigan, 2018). By mapping SLA
tiers to reactive behaviors, the system embeds business semantics directly into its concurrency and resource-
allocation strategies rather than treating performance as a uniform concern.

The priority-aware design also intersects in significant ways with the persistence and microservice-level insights
discussed earlier. For instance, Gold-tier flows may require access to non-blocking data stores to preserve latency
guarantees under load; if they depend on blocking JDBC calls, the system must ensure that sufficient dedicated
threads exist to handle those calls without starving other operations (Dahlin, 2020). Similarly, fallback behaviors
and cache strategies must be tailored to SLA tiers: high-priority flows may rely on precomputed cached results when
real-time computation becomes impossible, while lower tiers may receive partial responses or error messages
(Priority-Aware Reactive APIs, 2025; Sim et al., 2019).

Performance Testing Strategies for WebFlux and Reactive Systems

Given the complexity of reactive behavior and SLA-aware policies, performance testing becomes a critical discipline.
Gatheca’s exploration of load testing Spring WebFlux using JMeter provides concrete guidance on configuring test
plans, modeling concurrent users, and interpreting latency distributions (Gatheca, 2021). The article notes that
standard load-testing patterns, such as ramping up users gradually and simulating realistic think times, remain
applicable but must be complemented by careful monitoring of backpressure, event-loop thread utilization, and
resource saturation.

Moldstud’s overview of performance-testing strategies for Spring WebFlux applications expands this view by
enumerating tools and practices suited to reactive stacks (Moldstud, 2025). These include the use of Gatling for
high-fidelity HTTP load generation, integration with metrics collectors to observe throughput and latency from
within the application, and scenario design that explicitly tests edge conditions such as slow downstream services,
connection pool exhaustion, and cascading timeouts. The article emphasizes that reactive systems can fail
“gracefully bad”; that is, they may continue to respond but with degraded latency and subtle resource imbalances,
underscoring the need for fine-grained monitoring.

The Gatling project itself provides a powerful DSL for describing load scenarios, making it possible to script complex
behaviors such as periodic traffic spikes, coordinated ramp-up and ramp-down phases, and mixtures of different
request types (Gatling, 2023). When applied to WebFlux, Gatling scripts can help validate that backpressure policies
and priority-aware routing behave as expected: Gold-tier requests should exhibit relatively stable latency
distributions even when the system is saturated with additional Bronze-tier traffic.

Java Code Geeks’ discussion of mastering Spring WebFlux at scale offers a complementary perspective by linking
performance testing to architectural design decisions (Java Code Geeks, 2025). The article underscores that
performance testing should not be treated as a final verification step but as a design tool: by running early load
tests on prototype reactive pipelines, architects can discover bottlenecks and misconfigurations that would
otherwise become entrenched in production. For example, an apparently innocuous blocking call within a reactive
chain can be revealed as a hotspot through simple load tests, prompting a redesign or a change in driver choice.

These testing insights are critical for SLA-aware systems. It is not sufficient to verify average performance across all
requests; instead, tests must be designed to measure the behavior of each SLA tier under varying degrees of
contention, verifying that priority-aware mechanisms do indeed protect high-priority traffic. Without such tests,
priority-aware designs risk being aspirational rather than effective (Priority-Aware Reactive APls, 2025; Gatheca,
2021; Moldstud, 2025).

https://www.academicpublishers.org/journals/index.php/ijdsml 333

AMERICAN ACADEMIC PUBLISHER

DISCUSSION
Interpreting Performance Trade-Offs in Context

The synthesis of empirical benchmarks, case studies, and theoretical sources reveals that performance trade-offs
between Spring WebFlux and Spring MVC are more nuanced than simple reactive versus non-reactive dichotomies
suggest. Under conditions of high concurrency and I/O-bound workloads with non-blocking drivers, WebFlux
repeatedly demonstrates superior throughput and more stable latency distributions, especially as concurrency
scales beyond what thread-per-request models can efficiently handle (Minkowski, 2019; Dorado, 2019; Munhoz,
2020; SpringBoot MVC vs WebFlux, 2025). However, these advantages hinge on careful adherence to non-blocking
principles across the stack; the introduction of blocking JDBC calls or other synchronous operations into WebFlux
pipelines can erode or eliminate performance gains (Dahlin, 2020).

From a concurrency-theoretic perspective, this makes sense. Thread-per-request systems consume one thread per
blocking call, while event-loop systems multiplex many logical flows onto a few threads by suspending and resuming
work via callbacks (Oracle, 2023; Arpaci-Dusseau & Arpaci-Dusseau, 2018). When a WebFlux pipeline contains
blocking calls, those calls break the multiplexing assumption, forcing the system to create additional worker threads
and undermining the simplicity of the event loop. In effect, the system becomes a hybrid that must pay both the
complexity cost of reactive programming and the resource cost of blocking calls.

The data-access layer further complicates this picture. R2DBC promises non-blocking database access aligned with
reactive principles, but empirical benchmarks show that its performance is not universally superior to JDBC; it
depends on driver implementations, database configuration, and connection management strategies (Emanovikov,
n.d.). Architects must therefore evaluate R2DBC’s benefits in their specific context rather than assuming it will
always outperform JDBC. In some environments, especially those with stringent transactional requirements or
mature JDBC tooling, a well-tuned JDBC-based solution may remain competitive, even within a largely reactive
architecture (Dahlin, 2020; Emanovikov, n.d.).

At the same time, the psychological and organizational costs of reactive programming cannot be ignored. Case
studies report increased cognitive load, debugging difficulty, and development time when teams inexperienced
with reactive paradigms attempt to build complex systems (Hochbergs, 2017; Sim et al., 2019; Ferreira, 2022). These
costs may offset runtime benefits, particularly in domains where human factors—such as the ability to reason about
correctness and maintain systems over time—are paramount.

Consequently, the appropriate conclusion is not that WebFlux is inherently superior or inferior to Spring MVC, but
that its value is conditional. For purely CPU-bound workloads with modest concurrency, or for systems that must
integrate extensively with blocking libraries, the incremental benefits of WebFlux may be small, while the
complexity costs are large. For highly concurrent, I/0O-bound, latency-sensitive APls where non-blocking drivers and
reactive messaging layers are available, WebFlux offers substantial advantages, especially when combined with SLA-
aware priority mechanisms (Minkowski, 2019; Sim et al., 2019; Priority-Aware Reactive APIs, 2025).

Implications for SLA-Aware Design in Financial and High-Reliability Domains

SLA-aware design adds another layer of complexity. In financial services and similar domains, different clients and
operations have different performance expectations and business impacts; a uniform approach to resource
allocation and request handling is inadequate (Priority-Aware Reactive APIls, 2025). Priority-aware reactive APIs
demonstrate that WebFlux's flexibility can be harnessed to implement tier-specific concurrency limits, backpressure
policies, and degradation strategies, thereby aligning system behavior more closely with business needs.

However, the case studies suggest that this alignment is not automatic. Reactive systems can fail in subtle ways,
|

https://www.academicpublishers.org/journals/index.php/ijdsml 334

AMERICAN ACADEMIC PUBLISHER

distributing partial failures across components in ways that are hard to trace (Sim et al., 2019; Ferreira, 2022). For
SLA-aware systems, such subtle failures may be especially problematic: a Gold-tier client may experience sporadic
high latency or inconsistent fallbacks without the system clearly signaling a violation. To mitigate this, architects
must pair reactive designs with robust observability practices, including per-tier metrics, tracing, and alerting
(Gatheca, 2021; Moldstud, 2025; Java Code Geeks, 2025).

Furthermore, the choice of stack and concurrency model should reflect the nature of each SLA tier. For example,
high-priority real-time trading APIs that integrate with non-blocking market data feeds and perform short-lived,
I/O-bound operations may be ideal candidates for WebFlux-based, priority-aware pipelines. In contrast, lower-
priority batch reconciliation processes that execute long-running, database-heavy jobs might be better served by
optimized imperative services with careful rate limiting or, in future work, by virtual-thread-based designs that
reduce resource overhead without requiring reactive refactoring (Pressler & Bateman, 2023; Arpaci-Dusseau &
Arpaci-Dusseau, 2018).

The interplay between SLA tiers and persistence is also critical. Gold-tier flows may require more conservative
transaction isolation and consistency guarantees, making them harder to implement with emerging non-blocking
drivers; in such cases, the architectural decision may favor hybrid approaches where WebFlux orchestrates calls but
delegates critical persistence to well-understood JDBC-based services with dedicated resource pools (Dahlin, 2020;
Emanovikov, n.d.; Priority-Aware Reactive APIs, 2025). The key insight is that SLA-aware design is not purely about
prioritizing traffic; it is about selecting and configuring the entire technology stack—including frameworks, drivers,
and concurrency models—to reflect the risk profile and business importance of each operation.

Future Role of Virtual Threads and Emerging Concurrency Models

Although the provided references focus mainly on reactive versus traditional designs, the introduction of virtual
threads via JEP 425 invites speculation about future architectures. Virtual threads enable a model in which blocking
operations can be executed with dramatically reduced overhead, making thread-per-request designs more scalable
in theory (Pressler & Bateman, 2023; Oracle, 2023). From the perspective of this synthesis, virtual threads could
reduce the pressure to adopt fully reactive models purely for scalability while retaining imperative programming
benefits.

However, even in a virtual-thread-rich future, reactive architectures are likely to retain a role. Reactive paradigms
provide powerful compositional abstractions for complex asynchronous workflows, streaming data, and
backpressure-aware integrations—capabilities that go beyond simply handling many concurrent blocking calls
(Christensen & Nurkiewicz, 2016; Escoffier & Finnigan, 2018; Kalim, 2023). In SLA-aware systems that depend on
fine-grained prioritization and resilience, these compositional benefits may prove as important as raw concurrency.

A plausible long-term trajectory is therefore a hybrid ecosystem in which virtual-thread-based imperative services
coexist with reactive WebFlux services, each chosen according to their strengths. High-priority, streaming, or fan-
out-heavy operations might remain reactive; simpler CRUD-like operations might migrate to virtual threads.
Performance testing strategies and observability tools will need to evolve to handle such heterogeneity, ensuring
that SLA policies are enforced consistently across different concurrency models (Moldstud, 2025; Java Code Geeks,
2025; Gatling, 2023).

Limitations of the Present Synthesis

The present article is subject to several limitations. Most fundamentally, it does not introduce new measurements;
all performance claims are interpretive and based on existing benchmarks and case studies. While these sources
are diverse and collectively informative, they cannot capture the full range of possible configurations, workloads,

https://www.academicpublishers.org/journals/index.php/ijdsml 335

AMERICAN ACADEMIC PUBLISHER

and environments (Minkowski, 2019; Dorado, 2019; Munhoz, 2020; SpringBoot MVC vs WebFlux, 2025; Dahlin,
2020; Emanovikov, n.d.).

Moreover, the reliance on blog posts and practitioner reports introduces potential biases. Unlike peer-reviewed
studies, these sources may lack methodological rigor, standardized metrics, or comprehensive description of
experimental settings. Nevertheless, they reflect real-world concerns and should be interpreted as such—practice-
informed but not definitive.

Another limitation arises from the breadth of the topic. Reactive versus imperative programming, concurrency
theory, database access models, microservice architecture, and SLA-aware design are each large domains in their
own right. This synthesis necessarily abstracts away many details to maintain coherence, even while aiming for
deep elaboration. The result is a conceptual map rather than a fully specified design manual.

Finally, the input reference set is constrained and omits some contemporary developments, such as detailed
comparative studies of virtual threads versus WebFlux in production-like settings. As such work emerges, the
conceptual framework presented here will require refinement.

Future Research Directions
The synthesis suggests at least four directions for future research.

First, there is a need for more rigorous, domain-specific performance studies that compare Spring WebFlux and
Spring MVC under realistic workloads, including combinations of CPU-bound computation, network-bound calls,
and database access. Such studies should be transparent about their setups, use multiple driver configurations
(JDBC versus R2DBC), and report not just aggregate throughput but also per-request latency distributions and
resource utilization profiles (Minkowski, 2019; Dorado, 2019; Munhoz, 2020; SpringBoot MVC vs WebFlux, 2025;
Dahlin, 2020; Emanovikov, n.d.).

Second, future work should explore the interaction between SLA-aware priority mechanisms and different
concurrency models. For example, experiments could measure how well priority-aware WebFlux pipelines protect
high-priority traffic under adversarial load patterns, and how similar policies might be implemented using virtual
threads or hybrid architectures (Priority-Aware Reactive APIs, 2025; Escoffier & Finnigan, 2018; Pressler & Bateman,
2023).

Third, sociotechnical research is needed to understand the impact of reactive programming on developer
experience, team dynamics, and organizational outcomes. Surveys, interviews, and controlled experiments could
investigate how teams learn reactive paradigms, where they struggle, and what training or tooling mitigates those
challenges (Hochbergs, 2017; Sim et al., 2019; Ferreira, 2022).

Fourth, advances in performance-testing tools and methodologies tailored to reactive systems should be pursued.
Gatling, JMeter, and similar tools already provide robust foundations, but new frameworks that integrate load
testing with reactive observability, distributed tracing, and SLA-centric reporting could further improve
practitioners’ ability to reason about system behavior under stress (Gatheca, 2021; Moldstud, 2025; Gatling, 2023;
Java Code Geeks, 2025).

CONCLUSION

This article has provided an extensive, theoretically informed synthesis of performance considerations, architectural
trade-offs, and SLA-aware design strategies for reactive and imperative Java backends, focusing on the comparison
between Spring WebFlux and Spring MVC and on the conditions under which reactive programming delivers
tangible benefits.

https://www.academicpublishers.org/journals/index.php/ijdsml 336

AMERICAN ACADEMIC PUBLISHER

Grounded in empirical studies, benchmark reports, and case-based reflections, the analysis has shown that WebFlux
is particularly well suited to high-concurrency, I/0-bound workloads where non-blocking drivers and messaging
systems can be fully leveraged. In such contexts, reactive pipelines can sustain high throughput and stable latency
while enabling fine-grained backpressure and sophisticated failure-handling strategies (Minkowski, 2019; Dorado,
2019; Munhoz, 2020; SpringBoot MVC vs WebFlux, 2025; Piyumal, 2024; Java Code Geeks, 2025). At the same time,
the data-access layer often constrains these advantages; when blocking JDBC calls dominate, the benefits of
WebFlux are limited, and hybrid strategies that combine reactive HTTP handling with blocking persistence must be
carefully evaluated (Dahlin, 2020; Emanovikov, n.d.).

The synthesis has also highlighted that reactive programming is not free: it introduces conceptual complexity,
demanding new mental models and development practices. Case studies document both performance gains and
developmental challenges, underscoring that architectural decisions must consider human factors and
organizational capabilities, not just runtime metrics (Hochbergs, 2017; Sim et al., 2019; Ferreira, 2022).

In the domain of SLA-aware design, the priority-aware reactive APl approach demonstrates how WebFlux’s
flexibility can be harnessed to implement tiered traffic policies that align system behavior with business criticality,
particularly in financial services. Yet, making such policies effective requires robust performance testing,
observability, and governance so that high-priority traffic is genuinely protected under load (Priority-Aware
Reactive APIs, 2025; Gatheca, 2021; Moldstud, 2025; Gatling, 2023).

Looking forward, emerging concurrency constructs such as virtual threads promise to reshape the decision
landscape, potentially allowing imperative designs to scale more gracefully. Rather than displacing reactive
architectures, these innovations are likely to coexist with them, reinforcing the central conclusion of this article:
that architects should adopt a portfolio mindset, selecting reactive or imperative stacks, JDBC or R2DBC, and
particular concurrency mechanisms according to the specific workloads, SLAs, and organizational contexts they
face.

By weaving together theory and practice from the provided references, this article offers a structured conceptual
foundation on which further empirical work, tooling innovations, and architectural experimentation can build,
ultimately contributing to more reliable, performant, and business-aligned Java backends in an increasingly
demanding digital landscape.

REFERENCES

1. Akka Documentation. (2023). Akka Streams and Reactive Systems. Retrieved from
https://doc.akka.io/docs/akka/current/stream/index.html

2. Arpaci-Dusseau, R. H., & Arpaci-Dusseau, A. C. (2018). Operating Systems: Three Easy Pieces. Arpaci-Dusseau
Books.

3. Christensen, B., & Nurkiewicz, T. (2016). Reactive Programming with RxJava. O’'Reilly Media.

4. Dabhlin, K. (2020). An evaluation of Spring WebFlux with focus on built in SQL features (Master’s thesis). Mid
Sweden University.

5. Dorado, F. (2019). Reactive vs Non-Reactive Spring Performance. Personal blog. Retrieved from
https://frandorado.github.io/spring/2019/06/26/spring-reactive-vs-non-reactive-performance.html|

6. Emanovikov, T. (n.d.). R2DBC vs JDBC vs Vert.x — Not So Fast Benchmark. Medium. Retrieved from
https://medium.com/@temanovikov/r2dbc-vs-jdbc-vs-vert-x-not-so-fast-benchmark-c0a9fcabb274

7. Escoffier, C., & Finnigan, K. (2018). Reactive Systems in Java. O’Reilly Media.
|

https://www.academicpublishers.org/journals/index.php/ijdsml 337

https://doc.akka.io/docs/akka/current/stream/index.html
https://doc.akka.io/docs/akka/current/stream/index.html
https://frandorado.github.io/spring/2019/06/26/spring-reactive-vs-non-reactive-performance.html
https://frandorado.github.io/spring/2019/06/26/spring-reactive-vs-non-reactive-performance.html
https://medium.com/@temanovikov/r2dbc-vs-jdbc-vs-vert-x-not-so-fast-benchmark-c0a9fcabb274
https://medium.com/@temanovikov/r2dbc-vs-jdbc-vs-vert-x-not-so-fast-benchmark-c0a9fcabb274

AMERICAN ACADEMIC PUBLISHER

8. Ferreira, J. (2022). Reactive Microservices: An Experiment (Master’s thesis). Polytechnic of Porto.

9. Gatling. (2023). Gatling homepage. Retrieved from https://gatling.io/

10. Gatheca, G. (2021). Spring WebFlux: Load Testing Using JMeter. Medium. Retrieved from
https://gathecageorge.medium.com/6-spring-webflux-load-testing-using-jmeter-b0875b09fc25

11. Hochbergs, G. (2017). Reactive Programming and its effect on performance and the development process
(Master’s thesis). Lund University.

12. Java Code Geeks. (2025). Mastering Spring WebFlux: Reactive APls at Scale. Retrieved from
https://www.javacodegeeks.com/2025/07/mastering-spring-webflux-reactive-apis-at-scale.html

13. Kalim, S. (2023). Dive Deep: Reactive Programming in Java on Transactions. |IEEE Software Engineering and
Distributed Systems, 46, 219-231.

14. Minkowski, P. (2019). Performance Comparison Between Spring MVC vs Spring WebFlux with Elasticsearch.
Personal blog. Retrieved from https://piotrminkowski.com/2019/10/30/performance-comparison-between-
spring-mvc-and-spring-webflux-with-elasticsearch/

15. Moldstud. (2025). Performance Testing Your Spring WebFlux Application: Tools, Strategies, and Best Practices.
Retrieved from https://moldstud.com/articles/p-performance-testing-your-spring-webflux-application-tools-
strategies-and-best-practices

16. Munhoz, G. (2020). API Performance — Spring MVC vs Spring WebFlux vs Go. Medium. Retrieved from
https://filipemunhoz.medium.com/api-performance-spring-mvc-vs-spring-webflux-vs-go-f97b62d2255a

17. Nordlund, A., & Nordstrom, N. (2022). Reactive vs Non-reactive Java Framework. Bachelor’s thesis, Mid
Sweden University.

18. Oracle. (2023). Lesson: Concurrency. The Java Tutorials. Retrieved from
https://docs.oracle.com/javase/tutorial/essential/concurrency/

19. Piyumal, M. (2024). Mastering Reactive Programming with Spring WebFlux. Medium. Retrieved from
https://manjulapiyumal.medium.com/mastering-reactive-programming-with-spring-webflux-47dbf57857f0

20. Pressler, R., & Bateman, A. (2023). JEP 425: Virtual Threads (Preview). Retrieved from
https://openjdk.org/jeps/425

21. Priority-Aware Reactive APIs: Leveraging Spring WebFlux for SLA-Tiered Traffic in Financial Services. (2025).
European Journal of Electrical Engineering and Computer Science, 9(5), 31-40.
https://doi.org/10.24018/ejece.2025.9.5.743

22. Sim, A,, Barus, O., & Jaya, F. (2019). Lessons Learned in Applying Reactive System in Microservices. Journal of
Physics: Conference Series, 1175, 1-6.

23. Spring Framework Documentation. (2023). Spring Framework Reference Documentation: Web on Reactive
Stack. Retrieved from https://docs.spring.io/spring-framework/reference/web/webflux.html

24. Spring MVC vs Spring WebFlux: Choosing the Right Framework for Your Project. (2024). Dev.to. Retrieved from
https://dev.to/jottyjohn/spring-mvc-vs-spring-webflux-choosing-the-right-framework-for-your-project-4cd2

25. SpringBoot MVC vs WebFlux: Performance Comparison for JWT Verify and MySQL Query. (2025). Medium.
Retrieved from https://medium.com/deno-the-complete-reference/springboot-mvc-vs-webflux-

performance-comparison-for-jwt-verify-and-mysql-query-10d5ff08alba
1

https://www.academicpublishers.org/journals/index.php/ijdsml 338

https://gatling.io/
https://gathecageorge.medium.com/6-spring-webflux-load-testing-using-jmeter-b0875b09fc25
https://gathecageorge.medium.com/6-spring-webflux-load-testing-using-jmeter-b0875b09fc25
https://www.javacodegeeks.com/2025/07/mastering-spring-webflux-reactive-apis-at-scale.html
https://www.javacodegeeks.com/2025/07/mastering-spring-webflux-reactive-apis-at-scale.html
https://piotrminkowski.com/2019/10/30/performance-comparison-between-spring-mvc-and-spring-webflux-with-elasticsearch/
https://piotrminkowski.com/2019/10/30/performance-comparison-between-spring-mvc-and-spring-webflux-with-elasticsearch/
https://piotrminkowski.com/2019/10/30/performance-comparison-between-spring-mvc-and-spring-webflux-with-elasticsearch/
https://piotrminkowski.com/2019/10/30/performance-comparison-between-spring-mvc-and-spring-webflux-with-elasticsearch/
https://moldstud.com/articles/p-performance-testing-your-spring-webflux-application-tools-strategies-and-best-practices
https://moldstud.com/articles/p-performance-testing-your-spring-webflux-application-tools-strategies-and-best-practices
https://moldstud.com/articles/p-performance-testing-your-spring-webflux-application-tools-strategies-and-best-practices
https://moldstud.com/articles/p-performance-testing-your-spring-webflux-application-tools-strategies-and-best-practices
https://filipemunhoz.medium.com/api-performance-spring-mvc-vs-spring-webflux-vs-go-f97b62d2255a
https://filipemunhoz.medium.com/api-performance-spring-mvc-vs-spring-webflux-vs-go-f97b62d2255a
https://docs.oracle.com/javase/tutorial/essential/concurrency/
https://docs.oracle.com/javase/tutorial/essential/concurrency/
https://manjulapiyumal.medium.com/mastering-reactive-programming-with-spring-webflux-47dbf57857f0
https://manjulapiyumal.medium.com/mastering-reactive-programming-with-spring-webflux-47dbf57857f0
https://openjdk.org/jeps/425
https://openjdk.org/jeps/425
https://doi.org/10.24018/ejece.2025.9.5.743
https://doi.org/10.24018/ejece.2025.9.5.743
https://docs.spring.io/spring-framework/reference/web/webflux.html
https://docs.spring.io/spring-framework/reference/web/webflux.html
https://dev.to/jottyjohn/spring-mvc-vs-spring-webflux-choosing-the-right-framework-for-your-project-4cd2
https://dev.to/jottyjohn/spring-mvc-vs-spring-webflux-choosing-the-right-framework-for-your-project-4cd2
https://medium.com/deno-the-complete-reference/springboot-mvc-vs-webflux-performance-comparison-for-jwt-verify-and-mysql-query-10d5ff08a1ba
https://medium.com/deno-the-complete-reference/springboot-mvc-vs-webflux-performance-comparison-for-jwt-verify-and-mysql-query-10d5ff08a1ba
https://medium.com/deno-the-complete-reference/springboot-mvc-vs-webflux-performance-comparison-for-jwt-verify-and-mysql-query-10d5ff08a1ba
https://medium.com/deno-the-complete-reference/springboot-mvc-vs-webflux-performance-comparison-for-jwt-verify-and-mysql-query-10d5ff08a1ba

