

AMERICAN ACADEMIC PUBLISHER

https://www.academicpublishers.org/journals/index.php/ijdsml 325

INTERNATIONAL JOURNAL OF DATA SCIENCE AND MACHINE LEARNING (ISSN: 2692-5141)

Volume 05, Issue 02, 2025, pages 325-338
Published Date: - 01-12-2025

Synthesizing Reactive And Imperative Performance In Modern
Java Backends: A Comprehensive Analysis Of Spring Webflux,

Spring MVC, And SLA-Aware API Design

 Elena Rossi
Department of Software Systems, University of Zurich, Zurich, Switzerland

ABSTRACT

Background:

The rapid growth of API-driven architectures, microservices, and cloud-native deployments has made backend

performance a first-class concern, particularly in domains such as financial services where latency, throughput, and

availability are tightly bound to contractual service-level agreements (SLAs). Java ecosystems, historically grounded

in thread-per-request designs, are now experimenting with reactive programming models such as Spring WebFlux,

non-blocking persistence with R2DBC, and emerging concurrency constructs such as virtual threads, creating a

complex decision landscape for architects (Hochbergs, 2017; Arpaci-Dusseau & Arpaci-Dusseau, 2018; Pressler &

Bateman, 2023).

Objective:

This article develops a deeply elaborated, publication-ready conceptual synthesis of performance characteristics,

architectural trade-offs, and testing strategies for reactive and non-reactive Java backends. It draws strictly on

existing work that compares Spring WebFlux to Spring MVC and related stacks, investigates load and performance

testing techniques, and proposes priority-aware APIs in SLA-constrained settings (Priority-Aware Reactive APIs,

2025; Dahlin, 2020; Nordlund & Nordström, 2022; Ferreira, 2022; Dorado, 2019; SpringBoot MVC vs WebFlux,

2025).

Methods:

Using a qualitative theory-building approach, the study performs a structured narrative review of peer-reviewed

theses, conference papers, industrial blog posts, and vendor documentation on reactive programming,

concurrency, and performance testing. It then constructs an analytical model that contrasts reactive WebFlux,

imperative Spring MVC, and non-blocking data access approaches (JDBC versus R2DBC), integrating insights from

controlled experiments and “lessons learned” microservice case studies (Sim et al., 2019; Emanovikov, n.d.;

Minkowski, 2019; Munhoz, 2020). Finally, it synthesizes a conceptual architecture for priority-aware reactive APIs

and a set of performance-testing and tuning guidelines for WebFlux-based systems under realistic load patterns

(Gatheca, 2021; Moldstud, 2025; Java Code Geeks, 2025).

Results:

The synthesis shows that WebFlux excels under highly concurrent, I/O-bound loads, particularly when paired with

non-blocking data access and carefully designed backpressure and error handling; however, empirical studies

AMERICAN ACADEMIC PUBLISHER

https://www.academicpublishers.org/journals/index.php/ijdsml 326

consistently reveal that reactive stacks do not unconditionally outperform well-designed blocking MVC services,

especially when the database layer remains synchronous (Dahlin, 2020; Dorado, 2019; Minkowski, 2019).

Microbenchmarking work demonstrates that R2DBC can reduce response times for certain patterns but introduces

overhead in others, making performance highly workload-dependent (Emanovikov, n.d.). Case studies routinely

report a significant increase in conceptual complexity and development cost for reactive services, even when

runtime metrics improve (Hochbergs, 2017; Ferreira, 2022; Piyumal, 2024).

Conclusion:

Reactive programming with Spring WebFlux should be viewed as a specialized tool rather than a universal

replacement for Spring MVC. For SLA-tiered systems in finance and other latency-sensitive domains, a portfolio

strategy that combines reactive APIs, optimized imperative services, and emerging concurrency mechanisms offers

a more robust path than reactive absolutism (Priority-Aware Reactive APIs, 2025; Nordlund & Nordström, 2022;

Escoffier & Finnigan, 2018). The proposed synthesis offers practitioners and researchers a coherent framework for

choosing technology stacks, designing SLA-aware reactive architectures, and constructing rigorous performance-

testing regimes for modern Java backends.

KEYWORDS

Spring WebFlux; Spring MVC; reactive programming; R2DBC vs JDBC; performance testing; SLA-aware APIs; Java

concurrency.

INTRODUCTION

Over the last decade, backend development in Java has undergone a fundamental transformation. Where

traditional enterprise systems were dominated by monolithic applications deployed on application servers that

processed relatively predictable workloads, contemporary systems are increasingly decomposed into

microservices, exposed to volatile external traffic, and orchestrated on cloud platforms with elastic but finite

resources (Hochbergs, 2017; Ferreira, 2022). The rise of real-time analytics, mobile clients, and partner integrations

has dramatically increased concurrency, making performance and scalability central design concerns rather than

afterthoughts.

Within this broader shift, three intertwined forces have reshaped the Java server-side landscape. The first is the

maturation of microservice architecture as a common pattern for structuring complex systems, promoting fine-

grained services, independent deployment, and API-first design (Sim et al., 2019; Ferreira, 2022). The second is the

emergence of reactive programming models, described by the Reactive Manifesto as systems that are responsive,

resilient, elastic, and message-driven, implemented in Java via frameworks such as RxJava, Akka Streams, and

eventually Spring WebFlux and Reactor (Christensen & Nurkiewicz, 2016; Escoffier & Finnigan, 2018; Kalim, 2023).

The third is the evolution of concurrency primitives in the Java platform itself, moving from classic thread-per-

request paradigms to lightweight asynchronous constructs and, more recently, virtual threads (Oracle, 2023;

Pressler & Bateman, 2023).

Spring, as one of the dominant frameworks in the Java ecosystem, sits at the convergence of these forces. Spring

MVC represents a conventional synchronous, servlet-based model in which each incoming HTTP request is handled

by a dedicated thread from a pool; application code often performs blocking operations such as database queries

using JDBC; and scalability is achieved primarily through horizontal scaling and careful pool sizing (Spring MVC vs

Spring WebFlux, 2024). Spring WebFlux, introduced with Spring Framework 5, embodies a reactive, non-blocking

model built on Project Reactor’s Mono and Flux types, where a small number of event-loop threads orchestrate

AMERICAN ACADEMIC PUBLISHER

https://www.academicpublishers.org/journals/index.php/ijdsml 327

asynchronous processing and backpressure is a first-class concern (Piyumal, 2024; Java Code Geeks, 2025).

The appeal of WebFlux, particularly in performance-sensitive domains, is rooted in the intuition that non-blocking

I/O and efficient event loops can serve more concurrent requests with fewer threads, thus improving throughput

and potentially reducing latency under load (Gatheca, 2021; Moldstud, 2025). Several blog-based benchmarks and

experimental studies support this intuition under specific conditions, showing that reactive services maintain more

stable response times as concurrency increases compared to their Spring MVC counterparts (Minkowski, 2019;

Dorado, 2019; Munhoz, 2020; SpringBoot MVC vs WebFlux, 2025). Yet these same studies often reveal surprising

nuances: WebFlux can show higher CPU utilization in some scenarios, performance advantages can vanish when

the database layer remains blocking through JDBC, and developer productivity can suffer due to the unfamiliarity

and complexity of reactive chains (Dahlin, 2020; Hochbergs, 2017; Ferreira, 2022).

At the same time, financial services and other heavily regulated industries have been experimenting with priority-

aware APIs that differentiate traffic into SLA tiers—commonly labeled Gold, Silver, and Bronze—based on business

criticality and contractual obligations (Priority-Aware Reactive APIs, 2025). In such systems, pure throughput is not

the only metric of interest: the architecture must ensure that high-priority operations, such as payment

authorization or risk checks, are shielded from noisy neighbors, while lower-priority workloads can be throttled,

degraded, or delayed under stress (Priority-Aware Reactive APIs, 2025). Reactive architectures promise more fine-

grained control over backpressure and flow control, potentially making them attractive for SLA-aware designs;

however, whether and how these benefits materialize in real deployments remains an open question.

The performance landscape is further complicated by the data-access layer. Traditional Spring MVC applications

use JDBC, which exposes a blocking model: threads wait while database queries complete (Dahlin, 2020). Reactive

stacks rely on R2DBC or similar non-blocking drivers, enabling I/O operations to be represented as reactive streams;

but non-blocking database access comes with its own challenges, including driver maturity, transaction semantics,

and context propagation (Emanovikov, n.d.). Benchmarking work has shown that R2DBC can outperform JDBC in

specific high-concurrency scenarios, but also that the gains are not uniform, and misconfigured R2DBC use can

degrade performance instead of improving it (Emanovikov, n.d.).

In parallel, infrastructure for performance testing and load generation has matured. Tools such as Gatling and

JMeter, coupled with cloud-native observability stacks, make it easier to design, execute, and analyze load tests

that mimic realistic patterns (Gatling, 2023; Gatheca, 2021). Dedicated guidance has emerged around performance

testing strategies for reactive applications, emphasizing not just peak throughput but also request distribution,

backpressure behavior, and resource saturation patterns (Moldstud, 2025). Yet, many organizations still rely on

simplistic benchmarks that fail to capture the richness of reactive behavior, leading to premature or misguided

technology choices.

Against this backdrop, the present article addresses a set of interrelated questions. Under what conditions do

reactive Spring WebFlux applications actually deliver superior performance compared to Spring MVC? How do data-

access choices (JDBC versus R2DBC) influence this comparison? What are the implications of reactive programming

for developer experience, maintainability, and operational complexity? And how can architects design reactive APIs

that are not only fast but also SLA-aware, especially in domains like financial services where traffic is heterogeneous

and failure modes are complex (Priority-Aware Reactive APIs, 2025; Sim et al., 2019; Munhoz, 2020)?

Existing literature provides partial answers. Case studies on applying reactive systems in microservices

environments identify both measurable performance benefits and significant challenges around debugging, error

handling, and mental models (Sim et al., 2019; Hochbergs, 2017; Ferreira, 2022). Benchmarks comparing Spring

MVC and WebFlux in particular scenarios—such as JWT verification with MySQL queries or Elasticsearch-backed

AMERICAN ACADEMIC PUBLISHER

https://www.academicpublishers.org/journals/index.php/ijdsml 328

search APIs—demonstrate that WebFlux can handle higher levels of concurrency but sometimes at the cost of more

complicated code paths (Minkowski, 2019; SpringBoot MVC vs WebFlux, 2025). Conceptual work on concurrency

and operating systems clarifies why non-blocking I/O and event loops behave differently under contention

compared to thread-per-request models (Oracle, 2023; Arpaci-Dusseau & Arpaci-Dusseau, 2018). Yet, these

contributions are often siloed, leaving practitioners to piece together a coherent picture.

The contribution of this article is to weave these disparate strands into a comprehensive, theoretically grounded

synthesis. Specifically, it provides:

1. A detailed conceptual comparison of reactive and imperative Java backends, with particular attention to

Spring WebFlux, Spring MVC, and the interaction between application-level concurrency and data-access strategies

(Dahlin, 2020; Emanovikov, n.d.; Dorado, 2019).

2. An integrated reading of microservice case studies and performance benchmarks, extracting cross-cutting

lessons about when reactive architectures pay off, and when they do not (Sim et al., 2019; Hochbergs, 2017;

Ferreira, 2022; Minkowski, 2019; Munhoz, 2020; SpringBoot MVC vs WebFlux, 2025).

3. A conceptual framework for SLA-aware reactive API design that builds on priority-aware WebFlux proposals

and aligns them with realistic load-testing and tuning practices (Priority-Aware Reactive APIs, 2025; Gatheca, 2021;

Moldstud, 2025; Java Code Geeks, 2025).

By staying strictly within the boundaries of existing references, the article avoids speculative claims while still

developing a richly elaborated theoretical structure. This structure can guide both academic work—for example, in

designing future experiments or formal models of reactive behavior—and industrial practice, where teams must

make high-stakes technology choices under uncertainty.

METHODOLOGY

The methodological orientation of this article is qualitative, interpretive, and synthesis-oriented. Rather than

introducing new empirical data, it constructs a theory-backed narrative grounded in carefully selected primary and

secondary sources. This choice reflects the nature of the input data, which consists primarily of empirical studies,

master’s theses, technical blog posts, and vendor documentation, each offering partial insights into the reactive

versus imperative debate.

The methodology unfolds along three intertwined lines:

First, a structured narrative review of the provided references is conducted. Each reference is analyzed for its

contribution along several dimensions:

● its primary focus (for example, Spring WebFlux performance, R2DBC versus JDBC, microservice architecture,

concurrency at the OS level);

● its methodological stance (controlled experiment, benchmark, case study, conceptual exposition);

● its context (technology stack, deployment environment, workload characteristics); and

● its reported outcomes (performance metrics, qualitative lessons learned, caveats, and limitations).

For instance, Dahlin’s evaluation of Spring WebFlux with a focus on SQL features is classified as a thesis-driven

empirical study that examines the tension between non-blocking web APIs and inherently blocking relational data

stores (Dahlin, 2020). Ferreira’s work on reactive microservices is treated as an experiment that probes the

development and operational challenges of moving to reactive architectures (Ferreira, 2022). Medium and blog

posts such as those by Minkowski, Dorado, Munhoz, and Piyumal are interpreted as practitioner reports that, while

AMERICAN ACADEMIC PUBLISHER

https://www.academicpublishers.org/journals/index.php/ijdsml 329

not peer-reviewed, provide grounded insights into real-world performance concerns and engineering trade-offs

(Minkowski, 2019; Dorado, 2019; Munhoz, 2020; Piyumal, 2024).

Second, an analytical comparison framework is developed that explicitly relates reactive and imperative models to

underlying concurrency theory. Drawing on Oracle’s Java concurrency tutorial and the operating-systems

perspective articulated by Arpaci-Dusseau and Arpaci-Dusseau, the study maps thread-per-request designs, event-

loop-based reactive designs, and virtual-thread-based designs onto basic abstractions such as threads, queues,

scheduling, and blocking states (Oracle, 2023; Arpaci-Dusseau & Arpaci-Dusseau, 2018). This theoretical backbone

enables a consistent interpretation of empirical results. For example, when Dorado reports differences between

Spring MVC and WebFlux performance in a given scenario, those differences are understood in terms of how each

model schedules tasks, how it handles blocking, and how it responds to queuing delays under load (Dorado, 2019).

Third, a conceptual model of SLA-aware reactive API architecture is synthesized. Building on the explicit description

of priority-aware reactive APIs in financial services and on generic guidance for reactive systems from Escoffier and

Finnigan, Kalim, and Java Code Geeks, the study constructs an architectural layering that incorporates reactive

flows, priority queues, backpressure mechanisms, and load-testing feedback loops (Priority-Aware Reactive APIs,

2025; Escoffier & Finnigan, 2018; Kalim, 2023; Java Code Geeks, 2025). This model is not presented as a formal

specification but as a richly detailed narrative that architects can adapt to their own contexts.

Throughout, the analysis adheres to two constraints. First, it remains strictly within the set of references provided,

avoiding the introduction of additional sources. Second, it refrains from making numerical claims that are not

directly supported by the referenced work; instead, it describes performance relationships qualitatively, such as

“WebFlux maintained lower latency under increasing concurrency in the reported benchmark” (Minkowski, 2019;

Munhoz, 2020; SpringBoot MVC vs WebFlux, 2025).

This methodology is particularly suitable for a field where technologies evolve rapidly and scholarly coverage lags

practitioner experimentation. By systematically organizing and interpreting existing evidence, the article provides

a foundation for more targeted empirical research and more informed industrial decision-making.

RESULTS

Conceptualizing Concurrency: From Threads to Reactive Streams

The first major result of the synthesis is a clarified conceptual understanding of how concurrency is realized in the

different architectures under discussion. Oracle’s Java concurrency lesson presents a classical view of threads as

independent paths of execution that share memory and must be synchronized to avoid race conditions (Oracle,

2023). In typical server applications, each incoming request is assigned to a thread from a pool; the thread processes

the request, invokes blocking I/O operations such as JDBC calls, and eventually returns a response. The underlying

operating system schedules threads on CPU cores, and blocking calls suspend threads, enabling others to run

(Arpaci-Dusseau & Arpaci-Dusseau, 2018).

Spring MVC inherits this paradigm, using container-managed thread pools and synchronous controllers. Its

performance characteristics are thus shaped by thread pool sizes, blocking behavior, and the time each thread

spends waiting on network or disk I/O (Dorado, 2019; Spring MVC vs Spring WebFlux, 2024). Under low to moderate

concurrency, this model is simple and effective; as concurrency grows, however, the number of simultaneous

waiting threads can inflate memory usage, increase context-switch overhead, and exacerbate queuing delays

(Munhoz, 2020).

Reactive programming, by contrast, treats concurrency as a matter of composing asynchronous events rather than

managing large numbers of threads directly. RxJava introduced a model in which observables emit items over time,

AMERICAN ACADEMIC PUBLISHER

https://www.academicpublishers.org/journals/index.php/ijdsml 330

and observers react to them using transformation operators (Christensen & Nurkiewicz, 2016). Reactor, the

foundation of Spring WebFlux, embraces a similar model but emphasizes backpressure and a strong type distinction

between single-value Mono and multi-value Flux (Piyumal, 2024; Java Code Geeks, 2025). Instead of dedicating one

thread per request, WebFlux uses a small set of event-loop threads to process many requests, suspending and

resuming them by registering callbacks that are invoked when asynchronous operations complete (Piyumal, 2024).

Escoffier and Finnigan describe reactive systems as those that leverage asynchronous message passing, non-

blocking I/O, and event-driven execution to maintain responsiveness under variable load (Escoffier & Finnigan,

2018). In this view, a reactive service is not simply “fast” but structurally designed to handle backpressure,

propagate failure signals, and scale elastically across cores and nodes. Akka’s documentation similarly emphasizes

that actor-based systems, while conceptually different from Reactor streams, share the goal of isolating state and

communicating through messages, thereby facilitating resilience and concurrency (Akka Documentation, 2023).

The introduction of virtual threads via JEP 425 adds a third paradigm. Virtual threads are lightweight threads

managed by the Java runtime that can be parked and resumed with dramatically lower overhead than platform

threads, making it feasible to maintain large numbers of blocking operations without incurring the same resource

costs (Pressler & Bateman, 2023). Although the references provided focus primarily on reactive WebFlux and classic

MVC, the concurrency theory underlying virtual threads is deeply related: they aim to decouple the number of

logical threads from the number of carrier threads, allowing blocking code to behave more like asynchronous code

in terms of scalability, at least under some conditions (Oracle, 2023; Arpaci-Dusseau & Arpaci-Dusseau, 2018;

Pressler & Bateman, 2023).

The implications of these models for performance are profound. Under heavy load, thread-per-request designs risk

saturation when each thread spends substantial time waiting; event-loop reactive designs avoid this by multiplexing

many logical flows onto few threads but require careful non-blocking discipline; virtual threads attempt to gain

some of the benefits of multiplexing while preserving the imperative programming style. This conceptual frame sets

the context for interpreting the empirical studies in the references.

Empirical Comparisons: Spring MVC versus Spring WebFlux

Across the referenced empirical work and practitioner benchmarks, a consistent pattern emerges: reactive WebFlux

can outperform Spring MVC under high concurrency and I/O-bound workloads, but this advantage is contingent on

several factors and is often offset by increased complexity (Minkowski, 2019; Dorado, 2019; Munhoz, 2020;

SpringBoot MVC vs WebFlux, 2025).

Minkowski’s performance comparison between Spring MVC and WebFlux with Elasticsearch focuses on a search

API scenario, where requests query an Elasticsearch cluster and return paginated results (Minkowski, 2019). The

study reports that, when concurrency is low, there is little difference between MVC and WebFlux; latency and

throughput are comparable because neither system is resource-saturated. However, as the number of concurrent

clients increases, WebFlux maintains lower average latency and sustains higher throughput, largely because it can

handle more simultaneous requests without creating additional threads. Since Elasticsearch itself is a network

service, the calls are I/O-bound and naturally benefit from non-blocking behavior.

Dorado’s blog on reactive versus non-reactive Spring performance presents similar observations but emphasizes

how subtle differences in configuration can affect outcomes (Dorado, 2019). In his examples, when reactive

endpoints are not carefully tuned or when blocking calls leak into the reactive pipeline, the expected benefits can

be undermined. Dorado argues that reactive systems require a holistic approach in which all layers—controller,

service, repository, and external integrations—are aligned with non-blocking principles. Otherwise, the event loops

that power WebFlux can become clogged by blocking operations, eliminating the concurrency advantage and

AMERICAN ACADEMIC PUBLISHER

https://www.academicpublishers.org/journals/index.php/ijdsml 331

sometimes causing worse performance due to overhead.

Munhoz’s comparison of API performance across Spring MVC, WebFlux, and Go broadens the context by

introducing a non-Java baseline (Munhoz, 2020). While the precise metrics are tied to specific implementation

details, the high-level pattern is that WebFlux, when properly configured, scales better than MVC in handling

concurrent requests, but the Go implementation—thanks to its own lightweight concurrency primitives—delivers

strong performance as well. This reinforces the idea that architecture and runtime model, rather than framework

branding, determine scalability.

A more domain-specific piece is the Medium article on SpringBoot MVC versus WebFlux performance for JWT

verification and MySQL queries (SpringBoot MVC vs WebFlux, 2025). This scenario mixes CPU-bound work (JWT

verification) and I/O-bound work (MySQL queries) in different proportions. The reported findings indicate that

WebFlux gains a clear edge when the workload is dominated by I/O-bound queries and when a reactive MySQL

driver such as R2DBC is used. When the database calls remain synchronous via JDBC, the advantage shrinks, because

the reactive pipeline still needs to bridge to blocking operations (SpringBoot MVC vs WebFlux, 2025).

Taken together, these studies suggest the following conceptual rule: WebFlux outperforms MVC most convincingly

when the workload is heavily I/O-bound, the downstream services support non-blocking interaction, and the system

faces high concurrency; when these conditions are not met, the advantage narrows or disappears, especially if the

non-blocking model is forced to interoperate with blocking components (Minkowski, 2019; Dorado, 2019; Munhoz,

2020; SpringBoot MVC vs WebFlux, 2025).

The Role of Persistence: R2DBC versus JDBC

Dahlin’s evaluation of Spring WebFlux with a focus on built-in SQL features addresses a critical point often neglected

in superficial discussions: the database is frequently the dominant factor in backend performance, and its

interaction with the web layer determines overall responsiveness (Dahlin, 2020). The thesis examines how SQL-

based persistence interacts with WebFlux, highlighting that Spring’s traditional JDBC support is fundamentally

blocking. When WebFlux controllers call repositories that execute JDBC operations, those calls must be executed

on dedicated blocking thread pools, undermining the end-to-end non-blocking model.

Emanovikov’s “Not So Fast” benchmark comparing R2DBC, JDBC, and Vert.x adds a nuanced perspective by showing

that non-blocking data access through R2DBC does not automatically outpace JDBC in all scenarios (Emanovikov,

n.d.). In some test cases, R2DBC demonstrates lower latency and better throughput under heavy concurrent load,

particularly when the database server is capable of handling many connections efficiently. In others, JDBC performs

similarly or better, especially when connection management overhead or driver maturity issues come into play.

These findings underscore that the data-access layer cannot be treated as a simple plug-and-play component in

reactive systems. A WebFlux application that depends heavily on JDBC effectively splits the concurrency model: the

HTTP layer is non-blocking, but the persistence layer is blocking, forcing the system to maintain separate thread

pools and to handle potentially complex interactions between event-loop threads and blocking worker threads

(Dahlin, 2020). This hybrid model can still yield benefits if the blocking phases are relatively short and concurrency

is moderate, but it falls short of the idealized “everything is non-blocking” vision.

From the perspective of SLA-aware design, the persistence layer has crucial implications. High-priority operations

often require strong consistency guarantees and complex transactional behavior. Implementing such behavior in

R2DBC may be more challenging than in mature JDBC stacks, at least until the ecosystem stabilizes. Architects

therefore face a trade-off: embrace R2DBC to align with WebFlux and unlock high-concurrency non-blocking

performance, or retain JDBC for transactional robustness and developer familiarity while accepting some degree of

AMERICAN ACADEMIC PUBLISHER

https://www.academicpublishers.org/journals/index.php/ijdsml 332

blocking and hybridization (Dahlin, 2020; Emanovikov, n.d.).

Lessons from Reactive Microservices Case Studies

Beyond raw performance metrics, several references provide insights into the developmental and operational

experience of reactive microservices. Sim and colleagues present “Lessons Learned in Applying Reactive System in

Microservices,” reflecting on the practical challenges encountered when adopting reactive paradigms in real-world

systems (Sim et al., 2019). They report that while reactive designs helped meet performance and scalability goals,

teams struggled with debugging asynchronous flows, reasoning about backpressure, and integrating legacy

components that were not designed with asynchrony in mind. The need for comprehensive monitoring and tracing

was particularly acute, because subtle misconfigurations could lead to silent performance degradation rather than

obvious failures.

Hochbergs’ master’s thesis on reactive programming and its effect on performance and the development process

similarly concludes that reactive approaches bring both benefits and costs (Hochbergs, 2017). On the one hand, the

thesis confirms that reactive systems can deliver improved scalability and responsiveness in certain benchmarks.

On the other, it documents increased cognitive load for developers, who must think in terms of streams, operators,

and eventual completion rather than simple call stacks. The thesis emphasizes that code readability and

maintainability are at risk when reactive constructs are used indiscriminately or without adequate training.

Ferreira’s master’s thesis on reactive microservices offers an experiment in building microservice architectures with

reactive technologies and evaluating their behavior (Ferreira, 2022). The work highlights that reactive microservices

perform well under high concurrency, but pipeline complexity and error-handling strategies become critical design

dimensions. The experiment reveals that naive designs can propagate errors and cancellations in unexpected ways,

even when performance appears satisfactory.

Collectively, these case studies contribute a crucial qualitative dimension: reactive programming is not merely a

runtime optimization technique but a different way of thinking about control flow, error propagation, and resource

management. This has significant implications for SLA-aware systems: it is not enough to design a theoretically

optimal priority-aware architecture if the development team cannot reliably maintain and evolve the codebase (Sim

et al., 2019; Hochbergs, 2017; Ferreira, 2022).

SLA-Aware Reactive APIs and Priority-Tiered Traffic

The article “Priority-Aware Reactive APIs: Leveraging Spring WebFlux for SLA-Tiered Traffic in Financial Services”

presents a domain-specific application of WebFlux to the problem of serving heterogeneous traffic with different

SLAs (Priority-Aware Reactive APIs, 2025). In this model, API consumers are assigned to tiers—typically Gold, Silver,

and Bronze—depending on their contractual requirements and business importance. Gold-tier clients might be

high-value institutional partners whose operations require minimal latency and strong guarantees; Bronze-tier

clients might be low-priority batch users or experimental workloads.

The proposal uses WebFlux’s flexible scheduling and stream composition capabilities to enforce priority at the

application layer rather than solely relying on network-level infrastructure. For example, requests may be classified

at the edge and routed to dedicated reactive pipelines with tier-specific concurrency limits, backpressure strategies,

and timeouts. Gold-tier pipelines are configured to shed load aggressively when resource contention threatens

latency guarantees, ensuring that high-priority requests continue to be handled promptly even under stress.

Bronze-tier pipelines, by contrast, may accept substantial delays or be temporarily suspended when the system is

saturated (Priority-Aware Reactive APIs, 2025).

This priority-aware approach aligns with the theoretical properties of reactive systems described by Escoffier and

AMERICAN ACADEMIC PUBLISHER

https://www.academicpublishers.org/journals/index.php/ijdsml 333

Finnigan, who emphasize that reactive designs enable fine-grained flow control and resilience patterns via

asynchronous message passing and backpressure-aware operators (Escoffier & Finnigan, 2018). By mapping SLA

tiers to reactive behaviors, the system embeds business semantics directly into its concurrency and resource-

allocation strategies rather than treating performance as a uniform concern.

The priority-aware design also intersects in significant ways with the persistence and microservice-level insights

discussed earlier. For instance, Gold-tier flows may require access to non-blocking data stores to preserve latency

guarantees under load; if they depend on blocking JDBC calls, the system must ensure that sufficient dedicated

threads exist to handle those calls without starving other operations (Dahlin, 2020). Similarly, fallback behaviors

and cache strategies must be tailored to SLA tiers: high-priority flows may rely on precomputed cached results when

real-time computation becomes impossible, while lower tiers may receive partial responses or error messages

(Priority-Aware Reactive APIs, 2025; Sim et al., 2019).

Performance Testing Strategies for WebFlux and Reactive Systems

Given the complexity of reactive behavior and SLA-aware policies, performance testing becomes a critical discipline.

Gatheca’s exploration of load testing Spring WebFlux using JMeter provides concrete guidance on configuring test

plans, modeling concurrent users, and interpreting latency distributions (Gatheca, 2021). The article notes that

standard load-testing patterns, such as ramping up users gradually and simulating realistic think times, remain

applicable but must be complemented by careful monitoring of backpressure, event-loop thread utilization, and

resource saturation.

Moldstud’s overview of performance-testing strategies for Spring WebFlux applications expands this view by

enumerating tools and practices suited to reactive stacks (Moldstud, 2025). These include the use of Gatling for

high-fidelity HTTP load generation, integration with metrics collectors to observe throughput and latency from

within the application, and scenario design that explicitly tests edge conditions such as slow downstream services,

connection pool exhaustion, and cascading timeouts. The article emphasizes that reactive systems can fail

“gracefully bad”; that is, they may continue to respond but with degraded latency and subtle resource imbalances,

underscoring the need for fine-grained monitoring.

The Gatling project itself provides a powerful DSL for describing load scenarios, making it possible to script complex

behaviors such as periodic traffic spikes, coordinated ramp-up and ramp-down phases, and mixtures of different

request types (Gatling, 2023). When applied to WebFlux, Gatling scripts can help validate that backpressure policies

and priority-aware routing behave as expected: Gold-tier requests should exhibit relatively stable latency

distributions even when the system is saturated with additional Bronze-tier traffic.

Java Code Geeks’ discussion of mastering Spring WebFlux at scale offers a complementary perspective by linking

performance testing to architectural design decisions (Java Code Geeks, 2025). The article underscores that

performance testing should not be treated as a final verification step but as a design tool: by running early load

tests on prototype reactive pipelines, architects can discover bottlenecks and misconfigurations that would

otherwise become entrenched in production. For example, an apparently innocuous blocking call within a reactive

chain can be revealed as a hotspot through simple load tests, prompting a redesign or a change in driver choice.

These testing insights are critical for SLA-aware systems. It is not sufficient to verify average performance across all

requests; instead, tests must be designed to measure the behavior of each SLA tier under varying degrees of

contention, verifying that priority-aware mechanisms do indeed protect high-priority traffic. Without such tests,

priority-aware designs risk being aspirational rather than effective (Priority-Aware Reactive APIs, 2025; Gatheca,

2021; Moldstud, 2025).

AMERICAN ACADEMIC PUBLISHER

https://www.academicpublishers.org/journals/index.php/ijdsml 334

DISCUSSION

Interpreting Performance Trade-Offs in Context

The synthesis of empirical benchmarks, case studies, and theoretical sources reveals that performance trade-offs

between Spring WebFlux and Spring MVC are more nuanced than simple reactive versus non-reactive dichotomies

suggest. Under conditions of high concurrency and I/O-bound workloads with non-blocking drivers, WebFlux

repeatedly demonstrates superior throughput and more stable latency distributions, especially as concurrency

scales beyond what thread-per-request models can efficiently handle (Minkowski, 2019; Dorado, 2019; Munhoz,

2020; SpringBoot MVC vs WebFlux, 2025). However, these advantages hinge on careful adherence to non-blocking

principles across the stack; the introduction of blocking JDBC calls or other synchronous operations into WebFlux

pipelines can erode or eliminate performance gains (Dahlin, 2020).

From a concurrency-theoretic perspective, this makes sense. Thread-per-request systems consume one thread per

blocking call, while event-loop systems multiplex many logical flows onto a few threads by suspending and resuming

work via callbacks (Oracle, 2023; Arpaci-Dusseau & Arpaci-Dusseau, 2018). When a WebFlux pipeline contains

blocking calls, those calls break the multiplexing assumption, forcing the system to create additional worker threads

and undermining the simplicity of the event loop. In effect, the system becomes a hybrid that must pay both the

complexity cost of reactive programming and the resource cost of blocking calls.

The data-access layer further complicates this picture. R2DBC promises non-blocking database access aligned with

reactive principles, but empirical benchmarks show that its performance is not universally superior to JDBC; it

depends on driver implementations, database configuration, and connection management strategies (Emanovikov,

n.d.). Architects must therefore evaluate R2DBC’s benefits in their specific context rather than assuming it will

always outperform JDBC. In some environments, especially those with stringent transactional requirements or

mature JDBC tooling, a well-tuned JDBC-based solution may remain competitive, even within a largely reactive

architecture (Dahlin, 2020; Emanovikov, n.d.).

At the same time, the psychological and organizational costs of reactive programming cannot be ignored. Case

studies report increased cognitive load, debugging difficulty, and development time when teams inexperienced

with reactive paradigms attempt to build complex systems (Hochbergs, 2017; Sim et al., 2019; Ferreira, 2022). These

costs may offset runtime benefits, particularly in domains where human factors—such as the ability to reason about

correctness and maintain systems over time—are paramount.

Consequently, the appropriate conclusion is not that WebFlux is inherently superior or inferior to Spring MVC, but

that its value is conditional. For purely CPU-bound workloads with modest concurrency, or for systems that must

integrate extensively with blocking libraries, the incremental benefits of WebFlux may be small, while the

complexity costs are large. For highly concurrent, I/O-bound, latency-sensitive APIs where non-blocking drivers and

reactive messaging layers are available, WebFlux offers substantial advantages, especially when combined with SLA-

aware priority mechanisms (Minkowski, 2019; Sim et al., 2019; Priority-Aware Reactive APIs, 2025).

Implications for SLA-Aware Design in Financial and High-Reliability Domains

SLA-aware design adds another layer of complexity. In financial services and similar domains, different clients and

operations have different performance expectations and business impacts; a uniform approach to resource

allocation and request handling is inadequate (Priority-Aware Reactive APIs, 2025). Priority-aware reactive APIs

demonstrate that WebFlux’s flexibility can be harnessed to implement tier-specific concurrency limits, backpressure

policies, and degradation strategies, thereby aligning system behavior more closely with business needs.

However, the case studies suggest that this alignment is not automatic. Reactive systems can fail in subtle ways,

AMERICAN ACADEMIC PUBLISHER

https://www.academicpublishers.org/journals/index.php/ijdsml 335

distributing partial failures across components in ways that are hard to trace (Sim et al., 2019; Ferreira, 2022). For

SLA-aware systems, such subtle failures may be especially problematic: a Gold-tier client may experience sporadic

high latency or inconsistent fallbacks without the system clearly signaling a violation. To mitigate this, architects

must pair reactive designs with robust observability practices, including per-tier metrics, tracing, and alerting

(Gatheca, 2021; Moldstud, 2025; Java Code Geeks, 2025).

Furthermore, the choice of stack and concurrency model should reflect the nature of each SLA tier. For example,

high-priority real-time trading APIs that integrate with non-blocking market data feeds and perform short-lived,

I/O-bound operations may be ideal candidates for WebFlux-based, priority-aware pipelines. In contrast, lower-

priority batch reconciliation processes that execute long-running, database-heavy jobs might be better served by

optimized imperative services with careful rate limiting or, in future work, by virtual-thread-based designs that

reduce resource overhead without requiring reactive refactoring (Pressler & Bateman, 2023; Arpaci-Dusseau &

Arpaci-Dusseau, 2018).

The interplay between SLA tiers and persistence is also critical. Gold-tier flows may require more conservative

transaction isolation and consistency guarantees, making them harder to implement with emerging non-blocking

drivers; in such cases, the architectural decision may favor hybrid approaches where WebFlux orchestrates calls but

delegates critical persistence to well-understood JDBC-based services with dedicated resource pools (Dahlin, 2020;

Emanovikov, n.d.; Priority-Aware Reactive APIs, 2025). The key insight is that SLA-aware design is not purely about

prioritizing traffic; it is about selecting and configuring the entire technology stack—including frameworks, drivers,

and concurrency models—to reflect the risk profile and business importance of each operation.

Future Role of Virtual Threads and Emerging Concurrency Models

Although the provided references focus mainly on reactive versus traditional designs, the introduction of virtual

threads via JEP 425 invites speculation about future architectures. Virtual threads enable a model in which blocking

operations can be executed with dramatically reduced overhead, making thread-per-request designs more scalable

in theory (Pressler & Bateman, 2023; Oracle, 2023). From the perspective of this synthesis, virtual threads could

reduce the pressure to adopt fully reactive models purely for scalability while retaining imperative programming

benefits.

However, even in a virtual-thread-rich future, reactive architectures are likely to retain a role. Reactive paradigms

provide powerful compositional abstractions for complex asynchronous workflows, streaming data, and

backpressure-aware integrations—capabilities that go beyond simply handling many concurrent blocking calls

(Christensen & Nurkiewicz, 2016; Escoffier & Finnigan, 2018; Kalim, 2023). In SLA-aware systems that depend on

fine-grained prioritization and resilience, these compositional benefits may prove as important as raw concurrency.

A plausible long-term trajectory is therefore a hybrid ecosystem in which virtual-thread-based imperative services

coexist with reactive WebFlux services, each chosen according to their strengths. High-priority, streaming, or fan-

out-heavy operations might remain reactive; simpler CRUD-like operations might migrate to virtual threads.

Performance testing strategies and observability tools will need to evolve to handle such heterogeneity, ensuring

that SLA policies are enforced consistently across different concurrency models (Moldstud, 2025; Java Code Geeks,

2025; Gatling, 2023).

Limitations of the Present Synthesis

The present article is subject to several limitations. Most fundamentally, it does not introduce new measurements;

all performance claims are interpretive and based on existing benchmarks and case studies. While these sources

are diverse and collectively informative, they cannot capture the full range of possible configurations, workloads,

AMERICAN ACADEMIC PUBLISHER

https://www.academicpublishers.org/journals/index.php/ijdsml 336

and environments (Minkowski, 2019; Dorado, 2019; Munhoz, 2020; SpringBoot MVC vs WebFlux, 2025; Dahlin,

2020; Emanovikov, n.d.).

Moreover, the reliance on blog posts and practitioner reports introduces potential biases. Unlike peer-reviewed

studies, these sources may lack methodological rigor, standardized metrics, or comprehensive description of

experimental settings. Nevertheless, they reflect real-world concerns and should be interpreted as such—practice-

informed but not definitive.

Another limitation arises from the breadth of the topic. Reactive versus imperative programming, concurrency

theory, database access models, microservice architecture, and SLA-aware design are each large domains in their

own right. This synthesis necessarily abstracts away many details to maintain coherence, even while aiming for

deep elaboration. The result is a conceptual map rather than a fully specified design manual.

Finally, the input reference set is constrained and omits some contemporary developments, such as detailed

comparative studies of virtual threads versus WebFlux in production-like settings. As such work emerges, the

conceptual framework presented here will require refinement.

Future Research Directions

The synthesis suggests at least four directions for future research.

First, there is a need for more rigorous, domain-specific performance studies that compare Spring WebFlux and

Spring MVC under realistic workloads, including combinations of CPU-bound computation, network-bound calls,

and database access. Such studies should be transparent about their setups, use multiple driver configurations

(JDBC versus R2DBC), and report not just aggregate throughput but also per-request latency distributions and

resource utilization profiles (Minkowski, 2019; Dorado, 2019; Munhoz, 2020; SpringBoot MVC vs WebFlux, 2025;

Dahlin, 2020; Emanovikov, n.d.).

Second, future work should explore the interaction between SLA-aware priority mechanisms and different

concurrency models. For example, experiments could measure how well priority-aware WebFlux pipelines protect

high-priority traffic under adversarial load patterns, and how similar policies might be implemented using virtual

threads or hybrid architectures (Priority-Aware Reactive APIs, 2025; Escoffier & Finnigan, 2018; Pressler & Bateman,

2023).

Third, sociotechnical research is needed to understand the impact of reactive programming on developer

experience, team dynamics, and organizational outcomes. Surveys, interviews, and controlled experiments could

investigate how teams learn reactive paradigms, where they struggle, and what training or tooling mitigates those

challenges (Hochbergs, 2017; Sim et al., 2019; Ferreira, 2022).

Fourth, advances in performance-testing tools and methodologies tailored to reactive systems should be pursued.

Gatling, JMeter, and similar tools already provide robust foundations, but new frameworks that integrate load

testing with reactive observability, distributed tracing, and SLA-centric reporting could further improve

practitioners’ ability to reason about system behavior under stress (Gatheca, 2021; Moldstud, 2025; Gatling, 2023;

Java Code Geeks, 2025).

CONCLUSION

This article has provided an extensive, theoretically informed synthesis of performance considerations, architectural

trade-offs, and SLA-aware design strategies for reactive and imperative Java backends, focusing on the comparison

between Spring WebFlux and Spring MVC and on the conditions under which reactive programming delivers

tangible benefits.

AMERICAN ACADEMIC PUBLISHER

https://www.academicpublishers.org/journals/index.php/ijdsml 337

Grounded in empirical studies, benchmark reports, and case-based reflections, the analysis has shown that WebFlux

is particularly well suited to high-concurrency, I/O-bound workloads where non-blocking drivers and messaging

systems can be fully leveraged. In such contexts, reactive pipelines can sustain high throughput and stable latency

while enabling fine-grained backpressure and sophisticated failure-handling strategies (Minkowski, 2019; Dorado,

2019; Munhoz, 2020; SpringBoot MVC vs WebFlux, 2025; Piyumal, 2024; Java Code Geeks, 2025). At the same time,

the data-access layer often constrains these advantages; when blocking JDBC calls dominate, the benefits of

WebFlux are limited, and hybrid strategies that combine reactive HTTP handling with blocking persistence must be

carefully evaluated (Dahlin, 2020; Emanovikov, n.d.).

The synthesis has also highlighted that reactive programming is not free: it introduces conceptual complexity,

demanding new mental models and development practices. Case studies document both performance gains and

developmental challenges, underscoring that architectural decisions must consider human factors and

organizational capabilities, not just runtime metrics (Hochbergs, 2017; Sim et al., 2019; Ferreira, 2022).

In the domain of SLA-aware design, the priority-aware reactive API approach demonstrates how WebFlux’s

flexibility can be harnessed to implement tiered traffic policies that align system behavior with business criticality,

particularly in financial services. Yet, making such policies effective requires robust performance testing,

observability, and governance so that high-priority traffic is genuinely protected under load (Priority-Aware

Reactive APIs, 2025; Gatheca, 2021; Moldstud, 2025; Gatling, 2023).

Looking forward, emerging concurrency constructs such as virtual threads promise to reshape the decision

landscape, potentially allowing imperative designs to scale more gracefully. Rather than displacing reactive

architectures, these innovations are likely to coexist with them, reinforcing the central conclusion of this article:

that architects should adopt a portfolio mindset, selecting reactive or imperative stacks, JDBC or R2DBC, and

particular concurrency mechanisms according to the specific workloads, SLAs, and organizational contexts they

face.

By weaving together theory and practice from the provided references, this article offers a structured conceptual

foundation on which further empirical work, tooling innovations, and architectural experimentation can build,

ultimately contributing to more reliable, performant, and business-aligned Java backends in an increasingly

demanding digital landscape.

REFERENCES

1. Akka Documentation. (2023). Akka Streams and Reactive Systems. Retrieved from

https://doc.akka.io/docs/akka/current/stream/index.html

2. Arpaci-Dusseau, R. H., & Arpaci-Dusseau, A. C. (2018). Operating Systems: Three Easy Pieces. Arpaci-Dusseau

Books.

3. Christensen, B., & Nurkiewicz, T. (2016). Reactive Programming with RxJava. O’Reilly Media.

4. Dahlin, K. (2020). An evaluation of Spring WebFlux with focus on built in SQL features (Master’s thesis). Mid

Sweden University.

5. Dorado, F. (2019). Reactive vs Non-Reactive Spring Performance. Personal blog. Retrieved from

https://frandorado.github.io/spring/2019/06/26/spring-reactive-vs-non-reactive-performance.html

6. Emanovikov, T. (n.d.). R2DBC vs JDBC vs Vert.x – Not So Fast Benchmark. Medium. Retrieved from

https://medium.com/@temanovikov/r2dbc-vs-jdbc-vs-vert-x-not-so-fast-benchmark-c0a9fcabb274

7. Escoffier, C., & Finnigan, K. (2018). Reactive Systems in Java. O’Reilly Media.

https://doc.akka.io/docs/akka/current/stream/index.html
https://doc.akka.io/docs/akka/current/stream/index.html
https://frandorado.github.io/spring/2019/06/26/spring-reactive-vs-non-reactive-performance.html
https://frandorado.github.io/spring/2019/06/26/spring-reactive-vs-non-reactive-performance.html
https://medium.com/@temanovikov/r2dbc-vs-jdbc-vs-vert-x-not-so-fast-benchmark-c0a9fcabb274
https://medium.com/@temanovikov/r2dbc-vs-jdbc-vs-vert-x-not-so-fast-benchmark-c0a9fcabb274

AMERICAN ACADEMIC PUBLISHER

https://www.academicpublishers.org/journals/index.php/ijdsml 338

8. Ferreira, J. (2022). Reactive Microservices: An Experiment (Master’s thesis). Polytechnic of Porto.

9. Gatling. (2023). Gatling homepage. Retrieved from https://gatling.io/

10. Gatheca, G. (2021). Spring WebFlux: Load Testing Using JMeter. Medium. Retrieved from

https://gathecageorge.medium.com/6-spring-webflux-load-testing-using-jmeter-b0875b09fc25

11. Hochbergs, G. (2017). Reactive Programming and its effect on performance and the development process

(Master’s thesis). Lund University.

12. Java Code Geeks. (2025). Mastering Spring WebFlux: Reactive APIs at Scale. Retrieved from

https://www.javacodegeeks.com/2025/07/mastering-spring-webflux-reactive-apis-at-scale.html

13. Kalim, S. (2023). Dive Deep: Reactive Programming in Java on Transactions. IEEE Software Engineering and

Distributed Systems, 46, 219–231.

14. Minkowski, P. (2019). Performance Comparison Between Spring MVC vs Spring WebFlux with Elasticsearch.

Personal blog. Retrieved from https://piotrminkowski.com/2019/10/30/performance-comparison-between-

spring-mvc-and-spring-webflux-with-elasticsearch/

15. Moldstud. (2025). Performance Testing Your Spring WebFlux Application: Tools, Strategies, and Best Practices.

Retrieved from https://moldstud.com/articles/p-performance-testing-your-spring-webflux-application-tools-

strategies-and-best-practices

16. Munhoz, G. (2020). API Performance — Spring MVC vs Spring WebFlux vs Go. Medium. Retrieved from

https://filipemunhoz.medium.com/api-performance-spring-mvc-vs-spring-webflux-vs-go-f97b62d2255a

17. Nordlund, A., & Nordström, N. (2022). Reactive vs Non-reactive Java Framework. Bachelor’s thesis, Mid

Sweden University.

18. Oracle. (2023). Lesson: Concurrency. The Java Tutorials. Retrieved from

https://docs.oracle.com/javase/tutorial/essential/concurrency/

19. Piyumal, M. (2024). Mastering Reactive Programming with Spring WebFlux. Medium. Retrieved from

https://manjulapiyumal.medium.com/mastering-reactive-programming-with-spring-webflux-47dbf57857f0

20. Pressler, R., & Bateman, A. (2023). JEP 425: Virtual Threads (Preview). Retrieved from

https://openjdk.org/jeps/425

21. Priority-Aware Reactive APIs: Leveraging Spring WebFlux for SLA-Tiered Traffic in Financial Services. (2025).

European Journal of Electrical Engineering and Computer Science, 9(5), 31–40.

https://doi.org/10.24018/ejece.2025.9.5.743

22. Sim, A., Barus, O., & Jaya, F. (2019). Lessons Learned in Applying Reactive System in Microservices. Journal of

Physics: Conference Series, 1175, 1–6.

23. Spring Framework Documentation. (2023). Spring Framework Reference Documentation: Web on Reactive

Stack. Retrieved from https://docs.spring.io/spring-framework/reference/web/webflux.html

24. Spring MVC vs Spring WebFlux: Choosing the Right Framework for Your Project. (2024). Dev.to. Retrieved from

https://dev.to/jottyjohn/spring-mvc-vs-spring-webflux-choosing-the-right-framework-for-your-project-4cd2

25. SpringBoot MVC vs WebFlux: Performance Comparison for JWT Verify and MySQL Query. (2025). Medium.

Retrieved from https://medium.com/deno-the-complete-reference/springboot-mvc-vs-webflux-

performance-comparison-for-jwt-verify-and-mysql-query-10d5ff08a1ba

https://gatling.io/
https://gathecageorge.medium.com/6-spring-webflux-load-testing-using-jmeter-b0875b09fc25
https://gathecageorge.medium.com/6-spring-webflux-load-testing-using-jmeter-b0875b09fc25
https://www.javacodegeeks.com/2025/07/mastering-spring-webflux-reactive-apis-at-scale.html
https://www.javacodegeeks.com/2025/07/mastering-spring-webflux-reactive-apis-at-scale.html
https://piotrminkowski.com/2019/10/30/performance-comparison-between-spring-mvc-and-spring-webflux-with-elasticsearch/
https://piotrminkowski.com/2019/10/30/performance-comparison-between-spring-mvc-and-spring-webflux-with-elasticsearch/
https://piotrminkowski.com/2019/10/30/performance-comparison-between-spring-mvc-and-spring-webflux-with-elasticsearch/
https://piotrminkowski.com/2019/10/30/performance-comparison-between-spring-mvc-and-spring-webflux-with-elasticsearch/
https://moldstud.com/articles/p-performance-testing-your-spring-webflux-application-tools-strategies-and-best-practices
https://moldstud.com/articles/p-performance-testing-your-spring-webflux-application-tools-strategies-and-best-practices
https://moldstud.com/articles/p-performance-testing-your-spring-webflux-application-tools-strategies-and-best-practices
https://moldstud.com/articles/p-performance-testing-your-spring-webflux-application-tools-strategies-and-best-practices
https://filipemunhoz.medium.com/api-performance-spring-mvc-vs-spring-webflux-vs-go-f97b62d2255a
https://filipemunhoz.medium.com/api-performance-spring-mvc-vs-spring-webflux-vs-go-f97b62d2255a
https://docs.oracle.com/javase/tutorial/essential/concurrency/
https://docs.oracle.com/javase/tutorial/essential/concurrency/
https://manjulapiyumal.medium.com/mastering-reactive-programming-with-spring-webflux-47dbf57857f0
https://manjulapiyumal.medium.com/mastering-reactive-programming-with-spring-webflux-47dbf57857f0
https://openjdk.org/jeps/425
https://openjdk.org/jeps/425
https://doi.org/10.24018/ejece.2025.9.5.743
https://doi.org/10.24018/ejece.2025.9.5.743
https://docs.spring.io/spring-framework/reference/web/webflux.html
https://docs.spring.io/spring-framework/reference/web/webflux.html
https://dev.to/jottyjohn/spring-mvc-vs-spring-webflux-choosing-the-right-framework-for-your-project-4cd2
https://dev.to/jottyjohn/spring-mvc-vs-spring-webflux-choosing-the-right-framework-for-your-project-4cd2
https://medium.com/deno-the-complete-reference/springboot-mvc-vs-webflux-performance-comparison-for-jwt-verify-and-mysql-query-10d5ff08a1ba
https://medium.com/deno-the-complete-reference/springboot-mvc-vs-webflux-performance-comparison-for-jwt-verify-and-mysql-query-10d5ff08a1ba
https://medium.com/deno-the-complete-reference/springboot-mvc-vs-webflux-performance-comparison-for-jwt-verify-and-mysql-query-10d5ff08a1ba
https://medium.com/deno-the-complete-reference/springboot-mvc-vs-webflux-performance-comparison-for-jwt-verify-and-mysql-query-10d5ff08a1ba

