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ABSTRACT

Background: The increasing complexity and interconnectedness of cyber-physical systems (CPS)—including multi-
phase electric drives, unmanned aerial vehicles, underwater systems, building automation networks, and high-
performance computing devices—demand robust approaches for the detection, isolation, and mitigation of faults.
Traditional centralized diagnosis and single-method strategies face scalability, adaptability, and reliability
challenges when applied to heterogeneous deployments that combine mechanical, electrical, and software
components. This work synthesizes theoretical perspectives and applied developments from decentralized
estimation, machine learning, sliding-mode observers, and health-aware control to propose an integrated,
publication-ready framework for resilient fault diagnosis and fault-tolerant control across CPS domains.

Objectives: The goals are threefold: (1) to review and unify multiple methodologies for fault detection, isolation,
and tolerant control drawn from recent literature; (2) to propose a structured methodology that harmonizes
decentralized/distributed estimation with modern data-driven classifiers and domain adaptation techniques; and
(3) to demonstrate, through descriptive analysis, how the hybrid framework addresses practical constraints—such
as limited observability, actuator heterogeneity, and online transferability—highlighting performance tradeoffs and
deployment pathways.

Methods: The proposed methodology builds on modular elements: multiple-model estimation for decentralized
and distributed settings, residual generation and multiple-valued evaluation of residuals, sliding-mode observers
for faultidentification, and a spectrum of supervised and deep learning approaches for classification and localization
of faults. Emphasis is placed on domain adaptation for online detection in nonstationary environments, actuator
reliability modelling for health-aware control, and rule-based auto-correction mechanisms used in building
management systems. The methodology describes algorithmic interfaces, data-flow patterns among modules, and
practical considerations for implementation.

Results: Through descriptive analysis grounded in the literature, the framework demonstrates theoretical
robustness in isolating both abrupt and incipient faults across representative applications: multi-phase power
electronics, electric motors with trapezoidal back-EMF, multi-rotor UAV actuators, underwater thruster systems,
bearings and rotating machinery, and building HVAC networks. The hybrid approach yields complementary
advantages: decentralized multiple-model estimators provide scalability and local fault isolation (Straka &
Puncochaf, 2020); sliding-mode observers offer model-based precision for actuator faults (Zuev et al., 2020); data-
driven classifiers and deep transfer methods provide adaptability to unknown operating regimes and noisy
measurements (Mao et al., 2021; Li et al., 2021).

Conclusions: A synthesis of model-based and data-driven fault diagnosis with distributed estimation and health-
aware control offers a pragmatic route to enhanced resilience in CPS. Challenges remain in standardized
benchmarking, interpretability, and safe automatic correction, but the integrated pathway provides clear practical
steps for engineering adoption across industries. The work concludes with a detailed discussion of limitations,
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deployment recommendations, and prioritized future research directions.
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INTRODUCTION

Fault diagnosis and fault-tolerant control have matured into a multidisciplinary field that spans classical control
theory, signal processing, and modern machine learning. The impetus for continued innovation arises from two
concurrent trends. First, the pervasiveness of complex cyber-physical systems (CPS) in critical infrastructure,
transportation, manufacturing, and consumer devices has vastly increased the number of potential fault modes and
the cost of failures. Second, the availability of rich sensor data, networked communication, and computational
resources enables more sophisticated diagnosis algorithms but also introduces new challenges in scalability,
privacy, and cross-domain transferability. Collectively, these trends require rethinking diagnosis architectures to
combine decentralization, adaptable data-driven models, and rigorous model-based observers to ensure
dependable operation.

This article draws on a curated selection of contemporary research addressing diverse domains: distributed active
fault diagnosis algorithms (Straka & Puncochaf, 2020); fault-tolerant control for multi-phase and fault-tolerant
permanent magnet motors (Chen et al., 2021); multiple-valued residual evaluation for diagnostic reasoning
(Koscielny et al., 2021); neural network approaches for spacecraft actuator faults (Li et al., 2021); machine learning
for inverter and distributed generator faults (Ali et al., 2021); multi-phase transmission line fault location via
machine learning (Eboule et al., 2022); deep residual convolutional neural networks for robotic systems (Oh et al.,
2021); adversarial and transfer techniques for bearing early-fault detection (Mao et al., 2021); GPU diagnostic
automation for high-performance computing hardware (Lulla et al., 2025); sliding-mode observers for underwater
thrusters (Zuev et al., 2020); health-aware control for multirotor UAVs (Salazar et al., 2020); and building systems
diagnostics and automatic correction algorithms (Katipamula & Brambley, 2005; Kim & Katipamula, 2018; Lin et al.,
2020a, 2020b, 2021). Each of these contributions provides domain-specific insights; the central objective of the
present work is to create a coherent architecture that leverages the strengths of these approaches while
acknowledging their limitations.

The problem statement is simple in statement yet complex in realization: how can one design a diagnosis and
tolerant control architecture that reliably detects, isolates, and mitigates faults in heterogeneous CPS where
constraints include partial observability, communication limitations, evolving operating conditions, and diverse
fault modes? Traditional centralized schemes often fail when network bandwidth is constrained, when latency
matters, or when single points of failure exist. Conversely, purely data-driven methods may generalize poorly across
operating conditions and can lack the explainability necessary for safety-critical applications. A hybrid architecture
that systematically integrates decentralized model-based estimators with learning-based classifiers and domain
adaptation emerges as a promising compromise. This article argues for such an integration and provides a detailed
methodological blueprint for its realization, informed throughout by the cited literature.

The remainder of the introduction motivates each architectural choice by summarizing key contributions from the
literature and explaining the rationale for their inclusion in the integrated framework. Decentralized and distributed
active fault diagnosis approaches emphasize scalability and local decision-making, reducing communication needs
and enhancing robustness to node failures (Straka & Puncochar, 2020). Multiple-model estimation algorithms
afford explicit representations of hypothesized fault modes, enabling Bayesian or switching logic for residual
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interpretation and diagnosis. In parallel, residual evaluation strategies that employ multiple-valued logic allow
nuanced reasoning beyond binary thresholds; this is particularly valuable for complex sensors and correlated
residual patterns (Koscielny et al., 2021).

Model-based observers such as sliding-mode observers provide robustness to uncertainties and are well suited for
actuator fault identification in dynamic systems such as underwater thrusters and motors (Zuev et al., 2020). Health-
aware and fault-tolerant control methods offer systematic ways to reallocate control authority and schedule
mitigation measures in platforms like octorotor UAVs (Salazar et al., 2020). These methods tie diagnosis to control,
enabling systems to remain operational under degraded conditions.

However, model-based approaches alone are insufficient where models are incomplete or where there are
numerous configuration variations—as in distributed generators with cascade H-bridge inverters or multi-phase
transmission systems—thus creating room for machine learning algorithms that can classify open-switch faults,
locate faults on transmission lines, or adapt feature extractors to new operating regimes (Ali et al., 2021; Eboule et
al., 2022; Mao et al., 2021). The interplay between model and data approaches is central: models can provide
structure and constraints that regularize learning and enhance interpretability, while data-driven methods can
capture residual patterns and complex signatures that models may not represent.

Finally, the literature on building systems and analytics demonstrates the practical importance and business case
for diagnostic automation, as well as the challenges in implementing automatic correction algorithms in operational
settings (Holmberg, 2003; Lin et al., 2020a; Lin et al., 2020b; Lin et al., 2021). These works underscore the pragmatic
constraints—sensor placement, upkeep, and human approval processes—that any integrated framework must
consider for real-world adoption.

In sum, the introduction establishes the need for a structured hybrid framework, grounded in multiple threads of
advanced research, to meet the diagnosis and control requirements of modern CPS. The sections that follow detail
the methodology, describe anticipated results through integrative analysis, discuss limitations and research
directions, and provide prescriptive recommendations for practitioners.

METHODOLOGY

The methodology presented here is intentionally modular, reflecting the heterogeneous nature of CPS and the need
for adaptable deployments. It is organized into constituent modules with defined inputs, outputs, and interaction
protocols: (1) Local Model-Based Estimation and Residual Generation, (2) Residual Evaluation and Symptom
Reasoning, (3) Data-Driven Classification and Localization, (4) Distributed Multiple-Model Estimation and
Consensus, (5) Health-Aware Reconfiguration and Fault-Tolerant Control, and (6) Operational Decision and Auto-
Correction Interfaces. Each module is described at length, with emphasis on algorithmic principles, implementation
considerations, and integration patterns grounded in the literature.

Local Model-Based Estimation and Residual Generation

At the base layer of the architecture are local estimators that produce residuals—quantified deviations between
observed and predicted behavior—which serve as primary indicators of faults. The rationale for deploying local
observers is threefold: they reduce communication overhead by processing raw sensory streams near their source,
they can be tailored to the physical dynamics of subsystems (e.g., motor phases, thrusters, HVAC components), and
they provide interpretable signals rooted in physics.

Model selection for local observers depends on the subsystem dynamics and available measurements. For electrical
drives, models incorporate electrical circuit dynamics and back-EMF characteristics; for mechanical actuators, rigid-
body dynamics and actuator models are used. Sliding-mode observers are highlighted because of their inherent
|
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robustness properties—finite-time convergence and insensitivity to matched uncertainties make them well suited
to actuator fault identification in noisy environments (Zuev et al., 2020). Residuals are generated by comparing
measured outputs to observer outputs; additional processing includes smoothing, detrending, and adaptive
baseline estimation to mitigate false positives due to operational transients.

Residual thresholds are commonly used to trigger alarms, but binary thresholding is simplistic for complex systems.
Instead, the methodology emphasizes the extraction of multiple residual features—statistical moments, spectral
descriptors, and time-domain signatures—that feed downstream reasoning modules. For rotating machinery,
features may include kurtosis and spectral sidebands; for power electronics, harmonic content and instantaneous
phase discrepancies are informative. Crucially, the model-based residuals act as structured features that constrain
the interpretation space for learning algorithms, grounding them in domain knowledge.

Residual Evaluation and Symptom Reasoning

Rather than relying solely on threshold exceedance, the methodology employs a multiple-valued evaluation of
residuals and symptom sequences to enable nuanced diagnostic reasoning (Koscielny et al., 2021). Multiple-valued
logic extends binary decisions to graded interpretations—e.g., nominal, suspicious, degraded, and critical states—
reflecting uncertainty and gradual degradation. The residual evaluation module maintains a sliding window of
residual vectors and computes a multi-valued score based on magnitude, persistence, and correlation across
channels.

Elementary symptoms are derived as temporal patterns within residual sequences: single-channel spikes,
correlated multi-channel drifts, periodic modulations, or step changes. An elementary symptom sequence is the
ordered occurrence of these patterns and serves as a fingerprint for certain fault classes. The diagnostic reasoning
engine matches observed symptom sequences against a repository of known symptom patterns, using similarity
metrics that account for temporal alignment and partial matches. This approach allows early detection of incipient
faults that manifest as subtle symptom sequences before catastrophic failure.

Decision logic in this module also incorporates confidence measures and back-propagates uncertainty to upstream
observers—allowing observers to adjust sensitivity or request additional measurements when ambiguity is high.
The multiple-valued framework also facilitates human-readable explanations and graded alerts for operators,
improving trust and actionability.

Data-Driven Classification and Localization

While model-based residuals and symptom reasoning capture structured deviations, many real-world faults
manifest in complex, nonlinear ways that are more readily classified using machine learning. The methodology
provides a supervised classification path that ingests residual features, raw sensor streams, and hand-crafted
descriptors. A taxonomy of classifiers is recommended: lightweight tree-based algorithms (e.g., gradient boosting)
for explainability and speed in resource-constrained nodes; deep convolutional residual networks for high-
dimensional sensor data where temporal or spatial patterns are prominent (Oh et al.,, 2021); and ensemble
techniques for robustness.

A critical innovation is the integration of domain transfer and joint adversarial training when deploying models
across varying operating regimes or hardware variants (Mao et al., 2021). For example, bearings monitored in a
laboratory may display different noise characteristics in the field; domain adaptation techniques adjust feature
representations to align source and target distributions without retraining from scratch. Joint adversarial methods
minimize domain discrepancy while preserving fault discriminatory features, enabling online detection of bearing
early faults and improving generalization.
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The methodology advocates for staged training: offline supervised learning on historical labeled faults where
available, augmented with synthetic fault injections when safe and practicable, followed by online fine-tuning with
semi-supervised learning. For systems where labeled faults are scarce—common in safety-critical systems where
failures are rare—one-class classification and anomaly detection methods complement supervised classifiers by
modeling nominal behavior and flagging outliers.

Fault localization—identifying the physical component or spatial location of the fault—is treated as a multi-label
classification problem when multiple components may degrade concurrently. In electrical networks and
transmission lines, localization algorithms exploit spatially distributed measurements in combination with physics-
aware features to infer fault location (Eboule et al., 2022). Where communications permit, rapid sharing of location-
relevant features among nodes aids cooperative localization.

Distributed Multiple-Model Estimation and Consensus

Decentralization is a central design principle to scale to large CPS with many nodes and to reduce single points of
failure. Multiple-model estimation algorithms are naturally suited to decentralized active diagnosis: each node
maintains a bank of candidate models—nominal and various fault hypotheses—and computes local likelihoods
based on observations (Straka & Puncochar, 2020). Nodes periodically exchange compact belief messages with
neighbors and perform consensus updates to refine global fault hypotheses.

The methodology delineates communication protocols and belief-fusion strategies that are robust to packet loss
and asynchrony. Two complementary consensus schemes are proposed: weighted averaging of likelihoods with
confidence weights based on measurement quality, and message-passing with loopy belief propagation when the
network topology resembles a factor graph. The design ensures that nodes with richer information or higher
confidence exert more influence, yet the consensus mechanism remains resilient to Byzantine failures by
incorporating outlier suppression and trust metrics.

An important practical component is active fault diagnosis: nodes may direct experiments or probing actions (e.g.,
applying specific control inputs, initiating test sequences) to disambiguate competing hypotheses. Active strategies
increase diagnostic speed at the expense of temporary perturbations to normal operation; the methodology
describes tradeoffs and safety constraints, recommending conservative probing levels in safety-critical systems.

Health-Aware Reconfiguration and Fault-Tolerant Control

Diagnosis is only valuable insofar as it informs effective mitigation. The methodology integrates health modeling
and reconfiguration strategies that translate diagnostic outcomes into control adjustments. Health-aware control
involves quantifying actuator reliability and using that information to reallocate control commands, adjust
trajectory plans, or engage contingency modes (Salazar et al., 2020). For example, in multi-rotor UAVs, actuator
reliability maps can be used to compute control allocation matrices that redistribute forces among functioning
motors to maintain stability with degraded performance.

In power electronics and motor drives, fault-tolerant control often entails topology adjustments (e.g., switching to
redundant phases or reconfiguring inverter bridging strategies) to maintain torque production despite open-switch
faults or phase losses (Chen et al., 2021; Ali et al., 2021). The methodology prescribes layered reconfiguration:
immediate low-level control adjustments to maintain safe operation, followed by higher-level performance
recovery where possible.

When automatic correction is feasible, building upon prior work in fault auto-correction, the methodology
delineates safe auto-correction policies that consider human oversight, business rules, and energy impacts (Lin et
al.,, 2020a; Lin et al., 2020b; Lin et al.,, 2021). Auto-correction policies are conservative, requiring diagnostic
|
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confidence and impact assessment before direct actuator changes are made; where possible, auto-corrections are
suggested to operators rather than autonomously executed, particularly in early deployments.

Operational Decision and Auto-Correction Interfaces

The final module addresses human-machine interfaces, logging, and continuous improvement. Diagnostic outputs
include graded alarms, suggested corrective actions with associated confidence and expected effects, and
provenance metadata for auditability. Training datasets and labeled fault instances are stored for periodic
retraining. The architecture supports gradual automation: operator-in-the-loop for critical corrections initially,
moving toward greater automation as confidence and proven reliability increase.

Key implementation considerations include computational budgeting for edge nodes, data retention and privacy
policies for shared data, secure communication channels to prevent adversarial interference, and fail-safe modes
that default to safe halting of operations when ambiguity is excessive.

Integration Patterns and Practical Considerations

Integration of modules follows a publish-subscribe pattern with lightweight message schemas to minimize
bandwidth: residuals and symptom scores are published locally, classifiers subscribe and return labels and
confidence, and the distributed estimator subscribes to local belief updates. The methodology prescribes periodic
heartbeat and watchdog messages to ensure liveness. Emphasis is placed on modularity to permit incremental
deployment—starting with local observers and centralized analysis before migrating to full distributed consensus
as infrastructure matures.

Real-world deployments must anticipate sensor faults, time synchronization issues, and missing data. Robust
preprocessing, time-alignment procedures, and imputation strategies are therefore included as standard elements.
The methodology also suggests continuous calibration routines for observers, periodic model validation using
controlled test inputs, and use of redundancy where critical sensors are single points of failure.

RESULTS

Because this work synthesizes methods rather than reporting a single experimental dataset, the results section
presents a comprehensive descriptive analysis of expected performance, comparative strengths of methods, and
illustrative case syntheses across representative domains. Results are framed as reasoned outcomes supported by
cited literature rather than empirical claims from new experiments.

Performance of Local Observers and Residual Features

Model-based observers, particularly sliding-mode observers, achieve high sensitivity to actuator faults in dynamic
systems while being robust to matched uncertainties (Zuev et al., 2020). The literature indicates that properly tuned
sliding-mode observers can detect abrupt faults such as thruster degradation with rapid convergence, enabling
timely mitigation. For electrical drives, observers that model back-EMF and phase currents provide discriminative
residuals that expose open-switch faults and commutation anomalies (Chen et al., 2021). Residual features enriched
with temporal persistence and cross-channel correlation significantly reduce false alarms compared to naive
thresholding (Koscielny et al., 2021).

Efficacy of Multiple-Valued Residual Reasoning

The adoption of multiple-valued residual evaluation permits graded detection that captures incipient faults
manifesting as subtle deviations. Koscielny et al. (2021) demonstrate that multi-valued evaluation increases
diagnostic nuance and supports procedural reasoning about sequences of elementary symptoms. Applied to HVAC

and building systems, graded alerts enable prioritization of maintenance actions and correlate well with the
|
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observed operational impacts (Kim & Katipamula, 2018). The result is a diagnostic system that is more informative
and actionable for operators.

Machine Learning for Classification and Localization

Supervised machine learning models demonstrate strong accuracy in classification tasks when sufficient labeled
data exists. Ali et al. (2021) showed that classifiers can identify open-switch faults in cascade H-bridge inverters with
high accuracy. Similarly, Eboule et al. (2022) illustrate that machine learning applied to multi-phase transmission
data can accurately classify fault types and estimate locations. Deep learning architectures, particularly residual
convolutional networks, enable robust detection across complex sensor modalities but require careful
regularization and domain adaptation for deployment outside training distributions (Oh et al., 2021; Mao et al.,
2021).

Domain adaptation methods reduce the performance degradation that arises from distributional shifts between
training and deployment environments, a frequent occurrence in bearing fault detection and other rotating
machinery contexts (Mao et al., 2021). Joint adversarial training aligns feature spaces while retaining discriminative
capability, yielding more reliable online detection.

Distributed Multiple-Model Estimation and Consensus Outcomes

Distributed multiple-model estimation offers clear scalability benefits. Straka and Puncochar (2020) demonstrate
algorithms that maintain diagnostic performance while distributing computation and thereby reducing single-point
vulnerabilities. Consensus mechanisms ensure that compact belief messages suffice for maintaining a coherent
global view, and active diagnosis strategies accelerate hypothesis disambiguation. When network constraints and
asynchrony are considered, consensus with weighted confidence and outlier suppression maintains robustness.

Health-Aware Control and Fault Mitigation

Health-aware control methods allow systems to remain operational under degraded conditions. Salazar et al. (2020)
demonstrate that octorotor UAVs, when equipped with actuator reliability models, can reallocate thrust and
preserve safe flight. In motor drives, topology reconfiguration and torque reallocation sustain performance under
certain open-switch faults (Chen et al., 2021). The literature suggests performance tradeoffs: the system may
maintain safety and stability but at reduced efficiency, increased energy consumption, or diminished precision.

Practical Deployment Case Syntheses
Combining modules, the integrated framework yields the following practical outcomes for selected domains:

e Multi-phase Power Electronics and Motors: Local observers detect phase abnormalities; classifiers identify open-
switch signatures; distributed consensus helps localize faults in systems with multiple inverters (Ali et al., 2021;
Chen et al., 2021). Health-aware reconfiguration reduces torque ripple and preserves operation during fault
correction.

e UAVs and Multirotor Systems: Residual reasoning and sliding-mode observers identify actuator loss and
degradation; health-aware control reassigns control allocation to sustain flight, while machine learning supports
classification of partial faults that originate from mechanical wear or sensor degradation (Salazar et al., 2020; Oh et
al., 2021).

e Underwater Thrusters and Marine Systems: Sliding-mode observers detect thruster faults and asymmetric thrust;
distributed estimation supports cooperative unmanned vehicle fleets in isolating failing actuators (Zuev et al.,
2020).
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e Rotating Machinery and Bearings: Domain-adapted deep learning methods detect early bearing faults in noisy
environments; model-based residuals provide structural constraints that reduce false positives (Mao et al., 2021).

o Building Automation and HVAC: Integration of residual reasoning with business rules and auto-correction policies
can reduce energy waste and prevent recurring faults; conservative auto-correction procedures combined with
operator oversight ensure safety and acceptance (Lin et al., 2020a; Lin et al., 2020b; Lin et al., 2021).

e High-Performance Computing Hardware Diagnostics: Factory-grade diagnostic automation for GPUs benefits
from automated symptom extraction and classifiers trained on large operational traces, enabling faster root-cause
isolation and maintenance scheduling (Lulla et al., 2025).

These syntheses indicate that the integrated approach achieves complementary strengths: model-based observers
deliver interpretability and precise timing for fault onset; machine learning enhances pattern recognition for
complex signatures; distributed estimation enables scalable, robust decision making; and health-aware control ties
diagnosis to practical mitigation.

DISCUSSION

This section offers a deep interpretation of the synthesized results, explores limitations and counter-arguments,
and outlines prioritized future directions. The analysis emphasizes theoretical implications and provides practical
guidance for deployment.

Interpretation and Theoretical Implications

The integrated framework reflects a broader theoretical shift from monolithic, centralized diagnosis systems toward
hybrid, layered architectures that balance model structure and data adaptivity. Several theoretical themes emerge:

1. Complementarity of Model and Data: Model-based and data-driven methods are not mutually exclusive; instead,
they form a symbiotic pairing where models impose physics-based constraints and priors, and machine learning
captures residual complexities that models omit. This duality improves generalization and interpretability compared
to either approach alone.

2. Scalability via Decentralization: Distributed multiple-model estimation and consensus algorithms respond to the
scaling challenge inherent in modern CPS. The theoretical underpinning is that compact belief messages carry
sufficient statistical information when accompanied by local processing, reducing the information bottleneck
inherent in centralized architectures (Straka & Puncochar, 2020).

3. Tradeoffs between Speed, Accuracy, and Safety: Active probing accelerates diagnosis but may interfere with
nominal operation. Conservative auto-correction preserves safety but slows mitigation. The theoretical design
space requires formal tradeoff analysis—e.g., cost functions balancing diagnostic delay, energy consumption, and
risk exposure—to guide policy choices.

4. Uncertainty Management: Multiple-valued logic for residual evaluation and probabilistic belief fusion explicitly
incorporate uncertainty, aligning with decision-theoretic perspectives on fault diagnosis. Formalizing uncertainty
propagation and its effect on control decisions remains a theoretical necessity.

Limitations and Counter-Arguments
Several limitations temper the framework's practical application:

e Data Scarcity and Labeling: High-quality labeled fault data is scarce for rare, catastrophic failures. The

methodology mitigates this through synthetic fault injection and one-class modeling but cannot fully replicate the
|
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breadth of real events (Ali et al., 2021). Counter-arguments propose reliance on physics-based simulations to
augment datasets; however, simulation fidelity limits generalizability.

e Computational and Communication Constraints: Edge devices in many CPS have limited computation and
constrained communication links. While the architecture emphasizes lightweight message passing and local
processing, certain deep learning components may require offloading to cloud resources, introducing latency and
privacy concerns (Lulla et al., 2025).

® Model Mismatch and Nonstationarity: Model-based observers require accurate models, and machine learning
models risk degradation under distributional shifts. Domain adaptation addresses this to an extent, but continual
retraining and model validation are operationally demanding (Mao et al., 2021).

e Safety and Regulatory Acceptance: Automatic corrections in regulated or safety-critical contexts (e.g., aircraft
systems) may be restricted by certification and human factors requirements. Thus, conservative operator-in-the-
loop designs are necessary initially (Lin et al., 2020a).

e Security Concerns: Networked diagnosis systems may be subject to adversarial attacks that mimic faults or
suppress alarms. Robust consensus mechanisms with trust metrics help, but security must be designed alongside
diagnostic functions (Holmberg, 2003).

Future Research Directions
Prioritized research avenues include:

1. Formal Guarantees for Hybrid Architectures: Developing theoretical bounds on detection delay, false alarm rates,
and mitigation effectiveness for hybrid model/data architectures under network constraints would strengthen
confidence in deployments.

2. Simulation-To-Reality Transfer Techniques: Enhanced domain adaptation and physics-informed learning methods
that combine simulated fault scenarios with limited real data can improve sample efficiency.

3. Human Factors and Explainability: Creating diagnostic outputs that are both actionable and explainable for
operators is essential for adoption. Research into natural language summarization of symptom sequences and
recommended actions could bridge this gap.

4. Benchmarking and Open Datasets: The field would benefit from standardized datasets and benchmarks across
diverse domains to compare algorithms fairly and accelerate progress.

5. Secure and Resilient Consensus Protocols: Investigating consensus algorithms robust to adversarial nodes and
network partitioning will be critical as diagnosis systems become more interconnected.

6. Integration with Lifecycle Management: Diagnostic systems should feed into maintenance scheduling and supply-
chain planning. Research into closed-loop integration between diagnosis outputs and lifecycle decisions will yield
operational benefits.

Deployment Recommendations
For practitioners, the following pragmatic steps are advised:
e Start with local observers and residual reasoning to establish baseline detection capability.

e Augment with supervised classifiers where labeled fault data exist; where data are scarce, prioritize model-based
reasoning and anomaly detection.
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e Adopt distributed multiple-model estimation only after establishing reliable local processing and secure
communications; implement consensus protocols that tolerate packet loss.

o Use conservative auto-correction policies initially, escalating automation as confidence grows and human
operators become comfortable.

e Invest in continuous monitoring, retraining pipelines, and data management practices to sustain model relevance.
® Ensure security and privacy by design, including encryption of belief messages and authentication of nodes.
CONCLUSION

This article synthesizes diverse strands of contemporary research to present a comprehensive, integrated
framework for fault diagnosis and fault-tolerant control in cyber-physical systems. By combining local model-based
observers, multiple-valued residual reasoning, machine learning classification with domain adaptation, distributed
multiple-model estimation, and health-aware control, the architecture addresses core challenges of scalability,
adaptability, and safety. The descriptive results highlight the complementary strengths of each component and
illustrate their application across multiple domains—from electric drives and UAVs to underwater vehicles and
building automation.

Limitations persist—data scarcity, model mismatch, computational constraints, and security threats—and future
work should pursue formal guarantees, improved transfer learning methods, operator-centric explainability,
benchmarking, and resilient consensus protocols. Practitioners are advised to adopt the architecture incrementally,
emphasizing human oversight in early deployments and prioritizing secure communication and maintenance
integration.

Ultimately, resilient diagnosis and tolerant control require systems to be not only technically adept at fault
detection but also operationally aligned with safety procedures, human workflows, and business objectives. The
integrated pathway proposed here moves the field toward that synthesis by charting concrete, literature-backed
steps for the design, implementation, and continued evolution of dependable diagnostic systems.
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