

Research Article

Toward Personalized and Cluster-Aware Federated Learning under Data Heterogeneity: Theoretical Foundations, Methodological Advances, and Emerging Paradigms

Dr. Alejandro Moreno¹

¹Department of Computer Science, Universidad de Barcelona, Spain

Abstract

Received: 12 November 2025

Revised: 2 December 2025

Accepted: 20 December 2025

Published: 01 January 2026

Copyright: © 2026 Authors retain the copyright of their manuscripts, and all Open Access articles are disseminated under the terms of the Creative Commons Attribution License 4.0 (CC-BY), which licenses unrestricted use, distribution, and reproduction in any medium, provided that the original work is appropriately cited.

Federated learning has emerged as a transformative paradigm for collaborative model training across decentralized and privacy-sensitive data sources. By enabling multiple clients to jointly learn a global model without direct data sharing, federated learning addresses critical concerns related to data privacy, regulatory compliance, and communication efficiency. However, as real-world deployments expand across heterogeneous devices, applications, and user populations, fundamental challenges have become increasingly evident. Chief among these challenges is the presence of statistical heterogeneity, commonly referred to as non-identically and independently distributed data, which undermines the effectiveness of traditional federated optimization strategies such as Federated Averaging. This article presents an extensive and theoretically grounded exploration of personalized and cluster-aware federated learning as a response to these limitations. Drawing strictly on established literature, the paper synthesizes advances in soft and hard clustering, personalized optimization objectives, representation learning, curriculum strategies, and meta-learning approaches within federated settings. The methodology emphasizes a conceptual and comparative analysis of algorithmic frameworks rather than empirical experimentation, allowing for a deep examination of underlying assumptions, convergence behaviors, fairness implications, and trade-offs between global generalization and local adaptation. The results are presented as a descriptive synthesis of findings reported across prior studies, highlighting consistent patterns such as improved local performance, robustness to heterogeneity, and enhanced user-level fairness when personalization mechanisms are introduced. The discussion critically examines unresolved issues, including scalability, interpretability, privacy leakage risks, and regulatory considerations, while also outlining promising directions for future research. By unifying diverse strands of federated learning research into a coherent analytical narrative, this article aims to provide a comprehensive reference for researchers and practitioners seeking to design federated systems that are both privacy-preserving and adaptive to real-world data diversity.

Keywords: Federated learning, personalization, data heterogeneity, clustered learning, decentralized optimization, privacy-preserving machine learning

INTRODUCTION

The rapid proliferation of data-generating devices and platforms has fundamentally altered the landscape of machine learning. From smartphones and wearable sensors to Internet of Things infrastructures and autonomous systems, data is increasingly produced at the network edge rather than in centralized repositories. While this shift offers unprecedented opportunities for context-aware and user-centric intelligence, it also raises profound concerns related to data privacy, ownership, and regulatory

compliance. Traditional centralized machine learning paradigms, which rely on aggregating raw data into a single location for training, are often incompatible with legal frameworks and societal expectations surrounding data protection. Federated learning was proposed as a response to these challenges, offering a decentralized approach in which models are trained collaboratively across clients while keeping raw data local (McMahan et al., 2017).

At its core, federated learning seeks to optimize a shared model by iteratively aggregating locally computed updates from participating clients. Early formulations of this paradigm assumed that client data distributions were relatively homogeneous or that deviations from identical distributions would not significantly impair learning. However, subsequent empirical and theoretical investigations revealed that statistical heterogeneity is not merely a secondary concern but a defining characteristic of most real-world federated environments (Hsu et al., 2019). User behavior, device capabilities, and contextual factors introduce substantial variation in data distributions, leading to divergence between local objectives and the global optimization target.

This heterogeneity manifests in multiple dimensions. From a statistical perspective, clients may differ in label distributions, feature distributions, or both. From a systems perspective, clients vary in computational power, communication bandwidth, and availability. Together, these forms of heterogeneity complicate convergence analysis, degrade model performance, and raise fairness concerns, as global models may disproportionately favor dominant client groups. Foundational work in federated optimization highlighted these issues and demonstrated that naive aggregation schemes struggle under heterogeneous conditions (Li et al., 2020).

In response, the research community has pursued several complementary strategies. One line of work focuses on algorithmic corrections that stabilize training by controlling variance and drift across clients, exemplified by methods such as stochastic controlled averaging (Karimireddy et al., 2020). Another line emphasizes personalization, arguing that a single global model may be neither achievable nor desirable in heterogeneous settings. Instead, federated systems should produce models that adapt to individual clients or clusters of similar clients while still benefiting from shared knowledge (Tan et al., 2022).

Personalized federated learning reframes the objective of collaboration. Rather than optimizing a single model that performs adequately for all clients, personalization seeks to balance global generalization with local specialization. This balance can be achieved through various mechanisms, including fine-tuning global representations, learning client-specific heads, or jointly optimizing shared and private parameters (Collins et al., 2022; Li et al., 2021). Closely related is the concept of clustered federated learning, in which clients are grouped based on similarity, and separate models are learned for each group (Ghosh et al., 2020).

Despite the growing body of work in this area, the literature remains fragmented across algorithmic paradigms, application domains, and theoretical frameworks. Moreover, recent advances in meta-learning, curriculum learning, and representation transfer have introduced new perspectives on how personalization can be achieved efficiently and robustly in federated settings (Finn et al., 2017; Vahidian et al., 2023). This article addresses the need for an integrated and deeply elaborated analysis of these developments. By synthesizing insights from foundational and contemporary studies, it aims to clarify the conceptual underpinnings of personalized and cluster-aware federated learning, identify persistent challenges, and articulate a coherent research agenda for the field.

METHODOLOGY

The methodological approach adopted in this article is qualitative, analytical, and integrative in nature. Rather than proposing a new algorithm or conducting experimental evaluations, the study systematically examines existing federated learning frameworks through a theoretical and conceptual lens. This approach is particularly appropriate given

the diversity of assumptions, objectives, and evaluation metrics present in the literature. By focusing on methodological principles and comparative reasoning, the analysis seeks to uncover deeper patterns and trade-offs that may not be immediately apparent from isolated empirical results.

The first methodological step involves establishing a clear taxonomy of federated learning approaches based on their treatment of data heterogeneity and personalization. Foundational methods such as Federated Averaging are analyzed as baseline strategies that prioritize simplicity and communication efficiency (McMahan et al., 2017). Subsequent extensions are then examined in terms of how they modify local objectives, aggregation rules, or model architectures to accommodate heterogeneity. This includes optimization-based methods that introduce regularization terms or control variates to align local updates with global objectives (Karimireddy et al., 2020).

A second methodological dimension focuses on clustering mechanisms within federated learning. Both hard clustering approaches, which assign each client to a single cluster, and soft clustering approaches, which allow partial membership across clusters, are analyzed in detail (Ghosh et al., 2020; Li et al., 2021). The analysis considers the criteria used for clustering, such as gradient similarity or model divergence, as well as the implications of clustering decisions for convergence, stability, and fairness.

The methodology further incorporates insights from personalized learning frameworks that decouple shared representations from client-specific adaptations. This includes fine-tuning strategies, multi-head architectures, and bilevel optimization formulations that explicitly model the trade-off between global and local performance (Collins et al., 2022; Li et al., 2021). Theoretical concepts from representation learning and transfer learning are used to interpret these methods, drawing on established findings about feature transferability and task similarity (Yosinski et al., 2014).

Meta-learning approaches constitute another critical methodological component. By viewing federated learning as a distribution over tasks, meta-learning frameworks aim to learn initialization parameters or update rules that facilitate rapid adaptation to individual clients (Finn et al., 2017; Nichol, 2018). The methodology examines how these approaches integrate with federated protocols and how they address challenges such as communication constraints and privacy preservation.

Finally, the methodological analysis incorporates curriculum learning concepts, which introduce structured progression in training data or tasks to improve learning dynamics (Bengio et al., 2009). Recent work has explored how curricula can be constructed and deployed in federated settings to mitigate heterogeneity and accelerate convergence (Vahidian et al., 2023). By integrating these diverse methodological strands, the article constructs a comprehensive analytical framework for understanding personalized and cluster-aware federated learning.

RESULTS

The results of this study are presented as a descriptive synthesis of findings reported across the referenced literature. A consistent outcome across multiple studies is the observation that personalization mechanisms substantially improve client-level performance in heterogeneous federated environments. Traditional global models often exhibit uneven accuracy, performing well for clients whose data distributions align with the majority while underperforming for minority or outlier clients (Hsu et al., 2019). Personalized approaches address this imbalance by allowing models to adapt to local data characteristics.

Clustered federated learning methods demonstrate that grouping similar clients can yield performance gains comparable to individualized personalization while maintaining scalability (Ghosh et al., 2020). Hard clustering approaches show clear benefits when client populations naturally partition into distinct groups, but they may suffer when cluster boundaries are ambiguous or when client behavior evolves over time. Soft clustering methods mitigate this issue by allowing clients to share information across clusters in a weighted manner, leading to smoother adaptation and improved robustness

(Li et al., 2021; Ruan and Joe-Wong, 2022).

Optimization-based personalization methods, such as those introducing proximal terms or dual objectives, consistently report improved stability and convergence under non-identical data distributions (Li et al., 2020; Li et al., 2021). These methods effectively regularize local updates, preventing excessive divergence from the global model while still permitting meaningful adaptation. Control variate techniques further enhance these benefits by explicitly correcting for client drift, resulting in more predictable learning dynamics (Karimireddy et al., 2020).

Representation-based personalization strategies reveal that a significant portion of model knowledge can be shared across clients in the form of transferable features, while task-specific adaptations can be confined to higher-level parameters (Collins et al., 2022; Chen and Chao, 2021). This finding aligns with broader insights from deep learning research on feature reuse and transferability (Yosinski et al., 2014). As a result, fine-tuning global representations emerges as a powerful and computationally efficient personalization technique.

Meta-learning approaches yield promising results in scenarios where rapid adaptation is critical, such as when clients have limited data or when new clients frequently join the federation (Finn et al., 2017; Lim et al., 2024). These methods demonstrate improved sample efficiency and adaptability, though they often introduce additional complexity in training and communication.

Curriculum learning in federated settings shows that the order and structure of training tasks significantly influence convergence and final performance (Vahidian et al., 2023). Carefully designed curricula can reduce the adverse effects of heterogeneity by gradually exposing models to increasingly diverse data distributions. However, constructing effective curricula in decentralized environments remains a nontrivial challenge.

DISCUSSION

The synthesis of results highlights both the promise and the complexity of personalized and cluster-aware federated learning. One of the most significant theoretical implications is the reframing of federated learning objectives. Rather than seeking a universally optimal model, the field increasingly recognizes the legitimacy of multiple coexisting optima tailored to different client contexts (Tan et al., 2022). This shift has profound consequences for how performance, fairness, and success are defined and measured.

From an optimization perspective, personalization introduces additional degrees of freedom that complicate convergence analysis. While many methods demonstrate empirical success, formal guarantees often rely on restrictive assumptions about smoothness, convexity, or bounded heterogeneity. Bridging the gap between theory and practice remains an open challenge, particularly as models grow in scale and complexity. Privacy considerations also warrant careful attention. Although federated learning is designed to protect raw data, personalization and clustering mechanisms may inadvertently leak information about client similarities or data characteristics through model updates (Yang et al., 2019). Regulatory frameworks such as emerging privacy rights legislation underscore the importance of robust privacy-preserving mechanisms, including secure aggregation and differential privacy, in personalized federated systems (Mactaggert, 2020).

Scalability is another critical issue. While personalization improves performance, it may increase computational and communication overhead, especially when maintaining multiple models or client-specific parameters. Soft clustering and representation sharing offer partial solutions, but further research is needed to balance efficiency with adaptability in large-scale deployments (Nguyen et al., 2021).

Future research directions include the integration of adaptive clustering that evolves over time, the development of unified benchmarks for personalized federated learning, and the exploration of interdisciplinary perspectives from economics and social choice theory to address fairness and incentive alignment. Advances in meta-learning and curriculum design also hold promise for creating federated systems that are both flexible and

resilient to heterogeneity.

CONCLUSION

This article has provided an extensive and theoretically grounded examination of personalized and cluster-aware federated learning under data heterogeneity. By synthesizing insights from a broad range of foundational and contemporary studies, it has highlighted the limitations of purely global models and the growing importance of personalization as a core design principle in federated systems. The analysis demonstrates that methods incorporating clustering, personalized optimization, representation learning, meta-learning, and curricula offer meaningful improvements in performance, fairness, and robustness.

At the same time, the discussion underscores that personalization is not a panacea. It introduces new challenges related to scalability, privacy, and theoretical understanding that must be addressed through continued research. As federated learning continues to evolve and expand into diverse application domains, the ability to reconcile global collaboration with local adaptation will be central to its success. By articulating a coherent analytical framework and identifying key open questions, this article aims to contribute to the maturation of federated learning as a principled and practical approach to decentralized intelligence.

REFERENCES

1. Bengio, Y.; Louradour, J.; Collobert, R.; Weston, J. Curriculum learning. In Proceedings of the 26th Annual International Conference on Machine Learning, Montreal, Canada, 2009; pp. 41–48.
2. Chen, H.-Y.; Chao, W.-L. On bridging generic and personalized federated learning for image classification. arXiv, 2021, arXiv:2107.00778.
3. Collins, L.; Hassani, H.; Mokhtari, A.; Shakkottai, S. FedAvg with fine tuning: Local updates lead to representation learning. In Proceedings of the 36th Conference on Neural Information Processing Systems, New Orleans, USA, 2022; pp. 10572–10586.
4. Finn, C.; Abbeel, P.; Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks. In Proceedings of the International Conference on Machine Learning, Sydney, Australia, 2017; pp. 1126–1135.
5. Ghosh, A.; Chung, J.; Yin, D.; Ramchandran, K. An efficient framework for clustered federated learning. In Proceedings of the 34th Conference on Neural Information Processing Systems, Vancouver, Canada, 2020; pp. 19586–19597.
6. Hsu, T.-M.H.; Qi, H.; Brown, M. Measuring the effects of non-identical data distribution for federated visual classification. arXiv, 2019, arXiv:1909.06335.
7. Karimireddy, S.P.; Kale, S.; Mohri, M.; Reddi, S.; Stich, S.; Suresh, A.T. Scaffold: Stochastic controlled averaging for federated learning. In Proceedings of the International Conference on Machine Learning, 2020; pp. 5132–5143.
8. Li, C.; Li, G.; Varshney, P.K. Federated learning with soft clustering. IEEE Internet of Things Journal, 2021, 9, 7773–7782.
9. Li, T.; Hu, S.; Beirami, A.; Smith, V. Ditto: Fair and robust federated learning through personalization. In Proceedings of the International Conference on Machine Learning, 2021; pp. 6357–6368.
10. Li, T.; Sahu, A.K.; Zaheer, M.; Sanjabi, M.; Talwalkar, A.; Smith, V. Federated optimization in heterogeneous networks. Proceedings of Machine Learning and Systems, 2020, 2, 429–450.
11. Lim, J.H.; Ha, S.; Yoon, S.W. MetaVers: Meta-learned versatile representations for personalized federated learning. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, USA, 2024; pp. 2587–2596.
12. Lu, Z.; Pan, H.; Dai, Y.; Si, X.; Zhang, Y. Federated learning with non-iid data: A survey. IEEE Internet of Things Journal, 2024, 11, 19188–19209.
13. Mactaggert, A. The California Privacy Rights and Enforcement Act of 2020. Retrieved October 2024.
14. McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; Arcas, B.A. Communication-efficient learning of deep networks from decentralized data. In Proceedings of Artificial Intelligence and Statistics, 2017; pp. 1273–1282.
15. Nguyen, D.C.; Ding, M.; Pathirana, P.N.; Seneviratne, A.; Li, J.; Poor, H.V. Federated learning for internet of things: A comprehensive survey. IEEE Communications Surveys and Tutorials, 2021, 23, 1622–1658.
16. Nichol, A. On first-order meta-learning algorithms. arXiv, 2018, arXiv:1803.02999.
17. Ruan, Y.; Joe-Wong, C. FedSoft: Soft clustered federated learning with proximal local updating. In Proceedings of the AAAI Conference on Artificial Intelligence, 2022; pp. 8124–8131.
18. Tan, A.Z.; Yu, H.; Cui, L.; Yang, Q. Towards personalized federated learning. IEEE Transactions on Neural Networks and Learning Systems, 2022, 34, 9587–9603.
19. Vahidian, S.; Kadaveru, S.; Baek, W.; Wang, W.; Kungurtsev, V.; Chen, C.; Shah, M.; Lin, B. When do curricula work in federated learning? In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2023; pp. 5084–5094.
20. Yang, Q.; Liu, Y.; Chen, T.; Tong, Y. Federated machine learning: Concept and applications. ACM Transactions on Intelligent Systems and Technology, 2019, 10, 1–19.
21. Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How transferable are features in deep neural networks? Advances in Neural Information Processing Systems, 2014, 27, 3320–3328.