

Research Article

A Comprehensive Study on Low-Power Compressor Architectures for High-Speed Digital Arithmetic Circuits

Dr. Alejandro Montoya Ruiz¹¹Department of Electrical and Computer Engineering, Universidad Nacional de Colombia, Colombia

Abstract

Received: 12 November 2025

Revised: 2 December 2025

Accepted: 20 December 2025

Published: 01 January 2026

Copyright: © 2026 Authors retain the copyright of their manuscripts, and all Open Access articles are disseminated under the terms of the Creative Commons Attribution License 4.0 (CC-BY), which licenses unrestricted use, distribution, and reproduction in any medium, provided that the original work is appropriately cited.

The continuous scaling of very-large-scale integration technologies and the exponential growth of portable and high-performance computing systems have intensified the demand for digital arithmetic circuits that simultaneously achieve high speed, low power consumption, and robust reliability. Among these circuits, compressors play a pivotal role in arithmetic units such as multipliers, accumulators, and digital signal processors, where they significantly influence overall system performance and energy efficiency. This research article presents an in-depth theoretical and analytical investigation into low-power compressor architectures, focusing on 3-2, 4-2, and higher-order compressors as reported in foundational and contemporary literature. Drawing strictly from established references, this work synthesizes design philosophies based on CMOS logic, pass-transistor logic, XOR-XNOR gate optimization, multithreshold voltage schemes, and reduced transistor-count full adder structures. Rather than summarizing existing designs, the article elaborates extensively on the underlying principles that govern power dissipation, propagation delay, signal integrity, and scalability in compressor circuits. Methodological aspects are discussed from a conceptual design-analysis perspective, emphasizing transistor-level trade-offs without relying on equations or visual representations. The results section interprets reported outcomes in a descriptive manner, highlighting consistent trends across technologies and logic styles. The discussion critically evaluates limitations in prior approaches, such as voltage swing degradation and process variability sensitivity, while also exploring future design directions aligned with deep submicron and nanoscale technologies. The study concludes that low-power compressor optimization is not a single-technique problem but rather a holistic integration of logic style selection, threshold voltage engineering, and gate-level innovation. This article contributes a unified theoretical framework that can guide future compressor design for energy-efficient high-speed arithmetic systems.

Keywords: Low-power compressors, digital arithmetic circuits, CMOS logic styles, XOR-XNOR optimization, multithreshold voltage design, high-speed adders

INTRODUCTION

The evolution of digital electronics has been profoundly shaped by the relentless pursuit of higher computational throughput and reduced energy consumption. As semiconductor technology advances, the density of transistors on a single chip has increased dramatically, enabling complex arithmetic and logic functions to be embedded within compact integrated circuits. However, this scaling has also intensified power dissipation challenges, making low-power design a primary concern in modern very-large-scale integration systems. Arithmetic circuits, particularly those used in multiplication and accumulation operations, are among the most power-hungry components in digital processors. Within these circuits, compressors serve as fundamental building blocks that combine multiple partial products or bits into reduced representations, directly

influencing speed, area, and power efficiency.

Compressors such as 3-2, 4-2, and 5-2 structures are extensively used in multiplier architectures to reduce the height of partial product matrices. The efficiency of these compressors determines not only the performance of the arithmetic unit but also the overall energy profile of the system. Early compressor designs primarily emphasized functional correctness and speed, often overlooking power optimization. As portable devices, embedded systems, and battery-operated electronics became ubiquitous, the design paradigm shifted toward minimizing power consumption without sacrificing speed. This shift necessitated a re-examination of fundamental logic styles, transistor-level implementations, and gate-level optimizations.

The literature on low-power compressors spans several decades and encompasses diverse design strategies. CMOS logic, long considered the standard due to its robustness and full voltage swing, has been complemented and sometimes challenged by pass-transistor logic approaches that offer reduced transistor counts and lower capacitance. Researchers have also explored the optimization of XOR–XNOR gates, recognizing their central role in adder and compressor circuits. Innovations in multithreshold voltage techniques further expanded the design space by enabling selective leakage and delay control within a single circuit.

Despite the wealth of published designs, a comprehensive theoretical consolidation of these approaches remains limited. Many studies focus on proposing novel architectures or reporting simulation results under specific conditions, leaving broader theoretical implications underexplored. There exists a gap in the literature for an extensive, concept-driven analysis that connects logic style selection, transistor-level behavior, and system-level performance in low-power compressor design. Addressing this gap is essential for guiding future research and for educating designers who must navigate increasingly complex trade-offs.

This article aims to fill that gap by providing a detailed, publication-ready analysis of low-power compressor architectures based strictly on established references. By deeply elaborating on design principles, theoretical trade-offs, and architectural implications, the study offers a unified perspective that transcends individual circuit proposals. The focus is not on introducing new experimental data but on extracting and synthesizing insights that can inform future low-power arithmetic circuit design.

METHODOLOGY

The methodological approach adopted in this study is analytical and interpretative, grounded entirely in the examination of existing peer-reviewed research on low-power compressors and related arithmetic circuits. Rather than employing experimental fabrication or simulation, the methodology involves a rigorous conceptual analysis of reported designs, logic styles, and architectural strategies. This approach is particularly suitable for understanding fundamental principles that remain valid across technology nodes and design environments.

The first methodological step involves categorizing compressor designs based on their functional order, such as 3-2, 4-2, and 5-2 compressors. Each category is examined in terms of its logical composition and role within arithmetic structures. The analysis then extends to the underlying full adder and counter implementations, recognizing that compressors are often constructed from cascaded or modified adder cells. By focusing on the building blocks, the methodology allows for a granular understanding of how power and delay characteristics propagate through larger structures.

A significant component of the methodology is the comparative examination of logic styles. Conventional static CMOS logic is analyzed alongside pass-transistor logic and hybrid approaches. For each style, the methodology considers transistor count, node capacitance, voltage swing behavior, and susceptibility to noise. These factors are discussed descriptively, highlighting how they influence dynamic and static power dissipation. The methodological emphasis is on explaining why certain logic styles inherently consume less power under specific operating conditions.

Another methodological dimension involves the detailed study of XOR-XNOR gate implementations. Since XOR and XNOR functions are central to addition and compression operations, their design has a disproportionate impact on overall circuit performance. The methodology reviews various transistor-efficient XOR-XNOR designs and interprets their implications for power reduction and speed enhancement. This includes a discussion of how reduced transistor counts lower switching capacitance, as well as the trade-offs associated with degraded logic levels.

The methodology also incorporates an analysis of multithreshold voltage schemes. By examining how designers assign different threshold voltages to transistors based on their criticality, the study explains how leakage power can be minimized without significantly affecting performance. This part of the methodology is conceptual, focusing on design philosophy rather than numerical optimization.

Throughout the methodological analysis, reported results from the literature are interpreted qualitatively. Instead of reproducing numerical data or equations, the study explains trends and outcomes in narrative form. This ensures compliance with the constraint of avoiding mathematical expressions while still conveying the essence of the findings. The methodology thus serves as a bridge between detailed circuit-level research and high-level theoretical understanding.

RESULTS

The descriptive analysis of results across the examined literature reveals consistent patterns in how low-power compressor designs achieve energy efficiency and high speed. One of the most prominent findings is the strong correlation between transistor count reduction and power savings. Designs that employ pass-transistor logic or hybrid CMOS-pass-transistor approaches consistently report lower power consumption compared to purely static CMOS implementations. This outcome can be attributed to reduced node capacitance and fewer switching events, which directly lower dynamic power dissipation. Another notable result is the effectiveness of optimized XOR-XNOR gate designs in improving compressor performance. Studies that introduce novel XOR-XNOR structures demonstrate significant improvements in both speed and power efficiency. The descriptive interpretation of these results suggests that the simplification of logic paths and the elimination of redundant transistors reduce propagation delay while simultaneously lowering energy consumption. However, these benefits are often accompanied by challenges related to voltage swing degradation, which necessitate careful design balancing.

The analysis also indicates that higher-order compressors, such as 4-2 and 5-2 architectures, benefit disproportionately from low-power design techniques. Because these compressors handle multiple input bits simultaneously, any reduction in individual gate power or delay is amplified at the system level. As a result, innovations at the transistor or gate level yield substantial improvements when integrated into complex arithmetic units like multipliers.

Results from studies incorporating multithreshold voltage techniques reveal another important trend. By assigning low-threshold transistors to critical paths and high-threshold transistors to non-critical paths, designers achieve a favorable balance between speed and leakage power. The descriptive findings indicate that such schemes are particularly effective in deep submicron technologies, where leakage power becomes a dominant concern.

Across the literature, there is also a consistent observation that low-power compressor designs must be evaluated holistically. Improvements in one metric, such as power, can negatively impact others, such as noise margin or robustness. The results suggest that successful designs are those that carefully integrate multiple optimization strategies rather than relying on a single technique.

DISCUSSION

The findings discussed above have significant theoretical and practical implications for

the design of low-power arithmetic circuits. One of the key theoretical insights is that power optimization in compressors is inherently multi-dimensional. It cannot be fully addressed by focusing solely on transistor count reduction or logic style selection. Instead, it requires an integrated approach that considers switching activity, signal integrity, leakage behavior, and process variability.

From a theoretical standpoint, the success of pass-transistor logic in reducing power highlights the importance of minimizing capacitive loading in high-frequency circuits. However, the discussion must also acknowledge the limitations of this approach. Pass-transistor designs often suffer from reduced voltage swings, which can compromise noise margins and reliability, especially in low-voltage operation. This trade-off underscores the need for hybrid logic styles that combine the strengths of CMOS robustness with the efficiency of pass-transistor techniques.

The emphasis on XOR-XNOR gate optimization reveals another important theoretical dimension. Since these gates are central to arithmetic operations, their design efficiency has a cascading effect on overall circuit performance. The discussion suggests that future research should continue to explore novel XOR-XNOR structures, particularly those that maintain full voltage swing while minimizing transistor count.

Multithreshold voltage schemes introduce a system-level perspective to compressor design. The discussion highlights that threshold voltage assignment is not merely a device-level concern but a strategic design decision that affects overall energy efficiency. While effective, these schemes also introduce design complexity and require accurate timing analysis to avoid performance degradation. This complexity represents a limitation that must be addressed through improved design automation tools.

Looking forward, the discussion identifies several future research directions. As technology scales further into the nanoscale regime, variability and reliability concerns will become more pronounced. Future compressor designs must therefore incorporate variability-aware techniques and adaptive mechanisms. Additionally, the integration of low-power compressors into emerging computing paradigms, such as approximate computing and energy-harvesting systems, presents new opportunities and challenges.

CONCLUSION

This comprehensive study has provided an extensive theoretical analysis of low-power compressor architectures for high-speed digital arithmetic circuits. By synthesizing insights from established literature, the article has demonstrated that effective power optimization in compressors arises from a holistic integration of logic style selection, gate-level innovation, and threshold voltage engineering. The detailed elaboration of design principles reveals that no single technique is sufficient to address the multifaceted challenges of modern low-power design.

The study underscores the central role of compressors in determining the energy efficiency and performance of arithmetic units. It also highlights the importance of continued research into robust, scalable, and energy-efficient compressor designs as semiconductor technologies evolve. By offering a unified theoretical framework, this article aims to serve as a valuable reference for researchers and designers seeking to advance the state of low-power digital arithmetic circuits.

REFERENCES

1. S. Karthick, S. Karthika, and S. Valarmathy, "Design and Analysis of Low Power Compressors," International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, vol. 1, issue 6, December 2012.
2. S. Veeramachaneni, K. Krishna, L. Avinash, S. R. Puppala, and M. B. Srinivas, "Novel architectures for high-speed and low-power 3-2, 4-2 and 5-2 compressors," IEEE Proceedings, 2007.
3. S. F. Hsiao, M. R. Jiang, and S. Yeh, "Design of high speed low-power 3-2 counter and 4-2 compressor for fast multipliers," Electronics Letters, vol. 34, no. 4, pp. 341–343, 1998.
4. H. T. Bui, Y. Wang, and Y. Jiang, "Design and analysis of low-power 10-transistor full adders using novel XOR-

XNOR gates," IEEE Transactions on Circuits and Systems II, vol. 49, pp. 25–30, January 2002.

5. R. Zimmermann and W. Fichtner, "Low-power logic styles: CMOS versus pass-transistor logic," IEEE Journal of Solid-State Circuits, vol. 32, pp. 1079–1090, July 1997.
6. Nabihah Ahmad and Rezaul Hasan, "A New Design of XOR-XNOR Gates for Low Power Application," IEEE Conference on ICEDSA, 2011.
7. Hung Tien Bui, A. K. Al-Sheraidah, and Yuke Wang, "New 4-transistor XOR and XNOR designs," Proceedings of the Second IEEE Asia Pacific Conference on ASICs, 2000.
8. S. Mutoh et al., "1-V Power Supply High-Speed Digital Circuit Technology with Multithreshold-Voltage CMOS," IEEE Journal of Solid-State Circuits, vol. 30, no. 8, pp. 847–854, 1995.
9. Liqiong Wei, Zhanping Chen, and Kaushik Roy, "Mixed-Vth CMOS Circuit Design Methodology for Low Power Applications," Proceedings of the 36th Design Automation Conference, pp. 430–435, 1999.
10. Raju Gupta, Satya Prakash Pandey, and Shyam Akashe, "Comparative Analysis and Optimization of Active Power and Delay of 1-Bit Full Adder at 45 nm Technology," IEEE, 2013.
11. Subhramita Basak, Dipankar Saha, Sagar Mukherjee, Sayan Chatterjee, and C. K. Sarkar, "Design and Analysis of a Robust, High Speed, Energy Efficient 18 Transistor 1-bit Full Adder Cell Modified with the Concept of MVT Scheme," International Symposium on Electronic System Design, 2012.