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ABSTRACT 

Network security would be incomplete without firewalls that control traffic flow through rule-based policies. The 

manual way to configure and manage firewall rules, however, is prone to various pitfalls; rules tend to become 

overly complex, human error occurs, and cyber threats continue to evolve. This work investigates the reinforcement 

learning (RL) - driven method for firewall policy generation, utilizing RL as an automated means for policy generation 

to increase adaptability and reduce administrative overhead. The proposed system utilizes RL agents that learn an 

optimal policy from real-time network traffic and dynamically update firewall rules to maximize security while 

minimizing false positives and latency. The key contributions of this work include a novel system architecture that 

integrates reinforcement learning (RL) with existing firewall frameworks, as well as methodologies for data 

collection, feature engineering, and reward function design. Additionally, the system is evaluated using simulated 

network environments and benchmark datasets. It is demonstrated that the RL-based system achieves better 

accuracy in threat detection compared to traditional static or heuristic approaches, as well as improved policy 

effectiveness and network performance. Computational cost, explainability, exploration risks, and model 

generalization are discussed, and future research directions in transfer learning, multi-agent coordination, and 

integration with broader security frameworks are addressed. This work moves the field closer to realizing real-time, 

intelligent, and adaptive firewalls that can handle today's cybersecurity challenges. It motivates further exploration 

of more secure, interpretable, and production-ready RL-driven security solutions. 

Keywords: Firewall automation, Reinforcement learning, Network security, Adaptive policies, Cyber threat detection 

 

1. INTRODUCTION 

Firewalls are critically important network security devices as they act as gatekeepers that determine the flow of 

traffic into and out of computer networks. Therein lies the heart of what their operation is all about — firewall 

policies or sets of rules that determine which data packets should be allowed to pass and which to block. These 

policies enable networks to protect themselves by denying unauthorized entry, removing potentially harmful data, 

and permitting the safe and legitimate exchange among connected devices. This is a testament to the growing 

complexity of cyber threats, for which firewalls are becoming increasingly essential tools with ever stronger and 

more efficient firewall policies to ensure network security and integrity. 

In the traditional case, firewall policies are written manually by those analyzing network requirements and security 

considerations to create a rule at a time. This approach works well when the network is much smaller or simpler, 

but rapidly breaks down as network size and complexity grow. Enterprise networks in the modern world often 
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require hundreds or even thousands of firewall rules to support the diverse range of devices, applications, and 

various types of traffic they accommodate. With this large and dynamic rule set, managing it manually creates 

numerous issues: for example, it is easy to develop either rule conflicts or overlaps or to miss existing rules. The 

errors may occur accidentally, creating security vulnerabilities or interfering with legitimate network operations, 

which can result in costly downtime or a breach. Ultimately, the manual process is both time-consuming and prone 

to errors, placing a significant burden on on-site administrators. 

This creates these challenges, which are exacerbated by the rapidly evolving nature of cyber threats. Network traffic 

patterns are unpredictable due to the continuous development of new attack tactics, techniques, and procedures. 

These rapidly changing vectors make vectors render static firewall policies, which are configured once, quickly 

outdated. The problem is that purely human-written rules leave networks vulnerable to emerging threats, 

inadvertently blocking legitimate traffic with outdated or overly restrictive policies. This imposes a great need for 

automated and intelligent firewall management systems that can dynamically adapt to the real-time state of the 

network and the evolving threat landscape. There are several benefits to automating the generation of firewall 

policies. Continuously monitoring network traffic, analyzing traffic patterns, and adapting policies automatically in 

real-time helps reduce human error as well as the administrative overhead associated with updating manual rules. 

Such systems enable networks to respond quickly to new attacks or changing conditions, thereby enhancing overall 

network security and improving its operational efficiency. However, automated solutions that learn and perform 

well in complex network environments while maintaining trustworthiness and performance are an open technical 

problem. 

This article explores the application of reinforcement learning (RL), a subfield of machine learning that enables an 

agent to learn decision-making through trial and error by interacting with its environment, as a promising technique 

for generating automated policies. The goal thus focuses on creating an adaptive system that can extract knowledge 

from real network traffic data, identify risky and safe communications, and operate by dynamically formulated rules 

that continuously evolve to offer optimal protection. In other words, this work aims to demonstrate how 

reinforcement learning can alleviate the manual burden of firewall management by building new rules based on 

real-time network behavior, enabling the detection of configurations and connection servers, and, in general, 

providing a more adaptive firewall framework. The system's success in blocking malicious traffic while permitting 

good traffic to pass unimpeded is evaluated, and the performance of the RL-based approach is compared to two 

static policies and other machine learning-based classifiers. This article presents a practical and scalable approach 

to designing intelligent and adaptive buildings that align with the goals of today's networked environments. 

 

2. Background and Related Work 

To fully understand why reinforcement learning (RL) is used for creating firewall policies, one must examine the 

systems and techniques employed and how machine learning and artificial intelligence have been applied to the 

broader security domain. 

 

2.1 Traditional Methods of Firewall Management. 

Computer networks have relied on firewalls as a basic layer of defense for ages. Essentially, they are composed of 

a set of rules that determine whether to allow rock or block specific types of traffic. Usually, these rules define 

which IP addresses, ports, and protocols traffic needs to satisfy to be accepted. Often, these rules are manually 

configured by system administrators using platforms such as iptables, Cisco ASA, or sense. The benefit of this 

manual configuration approach is precise control; however, it is problematic in large or frequently changing 

networks. Each time a new device, service, or security requirement is introduced, new rules or changes to existing 
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ones may be implemented. As networks become increasingly complex, they are more likely to encounter rule 

conflicts, redundancies, or security gaps. But these rules are also static by nature; they don't adjust dynamically to 

new patterns observed in traffic or changes in threat behaviors. 

 

2.2 Policy Optimization & Conflict Resolution 

Researchers and practitioners have explored methods for optimizing firewall policies to address some of these 

challenges (26). The goal of rule reordering algorithms is to increase processing speed by placing the top rules in a 

list that matches most frequently. Therefore, conflict detection systems search for overlapping policies where two 

or more rules can contradict each other. If not intended, the incorrect traffic can either be allowed or blocked. Some 

systems include heuristics that eliminate redundant entries or combine similar rules. These methods are helpful but 

still reactive, often requiring human oversight. However, they do not address the core limitation of static policies, 

namely their inability to adapt when attackers' tactics change or the network environment changes. Ultimately, 

these optimizations serve best as support tools and cannot replace the need for a more intelligent and automated 

solution. 

 

2.3 AI for Cybersecurity 

In recent years, artificial intelligence, particularly machine learning, has seen broad applications in cybersecurity 

(1). Intrusion Detection Systems (IDS), spam filtering, and malware classification are a few models that have been 

widely used with supervised learning techniques. These models learn patterns in labelled data that help them 

recognize potential threats. After deployment, they can automatically flag suspicious activity that may require 

human review or automated response (13). For anomaly detection, unsupervised learning methods are also used, 

whereby the system learns what regular traffic should look like and raises an alert if it detects something unusual. 

The value of these approaches lies in their ability to detect new attack types that do not yet have a signature. While 

AI models like these are promising, they are not deployed in the same manner as most models; they are used solely 

for detection rather than for taking action, such as writing firewall rules. As a result, they don't operate well in real-

time environments. 

As shown in Figure 1, AI technologies have made significant strides in cybersecurity across different categories—

from detection to predictive analysis—but their integration into decision-making systems like firewalls remains 

limited. 

 
Figure 1: AI in CyberSecurity 

2.4 Reinforcement learning in network security 

A different approach to these problems is offered by reinforcement learning (22). Supervised models that don't rely 
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on labelled data learn through trial and error and receive feedback from the environment in the form of rewards or 

penalties. The result is a feedback loop for RL agents, allowing them to adapt over time and learn to behave more 

effectively in response to new scenarios. RL has been explored in the field of cybersecurity, particularly in access 

control, attack response planning, and various forms of anomaly detection. This can be implemented, for example, 

by deciding whether to activate specific defensive mechanisms or isolate compromised hosts based on their 

behavior. They demonstrate that RL can handle dynamic environments and discover powerful strategies without 

relying on pre-labelled data. In terms of research and practice, however, the usage of RL is still particularly limited 

to firewall policy generation (when one is required to generate, update, or remove filtering rules in real-time). 

 

2.5 Gap in the research 

While there has been remarkable progress in applying machine learning and reinforcement learning to security 

tasks, a clear space remains for solutions that automate dynamic and adaptive firewall rule generation. In most 

cases, current systems rely on manual updates, basic automation, or detection-based alerts that require follow-up 

action. It is necessary to develop a system that goes beyond detection, acting as a learning agent capable of 

understanding network traffic, selecting the best rule to apply, and adapting its strategy over time. Reinforcement 

Learning could meet this need; however, so far, there are no real-world studies or tools that apply RL to this task 

directly in an integrated fashion, making it deployable.  

 

3. Problem Definition 

This requires defining the problem in both technical and practical terms and demonstrating how it can be effectively 

applied to the context of reinforcement learning to generate firewall policies. It details what exactly firewall policy 

generation means, how one can represent rules suitable for machine learning models, and the objectives and 

constraints that must be considered. With this foundation, one can understand how to train an RL agent to make 

informed decisions in a network security context (8, 9). 

 

3.1 Firewall Policy Generation Problem (FPGP) 

The problem of generating the best set of rules that determines which traffic should be admitted through or blocked 

from a computer network, regarding a firewall policy generation problem (FPGP), is at the heart of it. In legacy 

systems, this process is completed manually by administrators who view traffic patterns, security alerts, and user 

needs and then create or update rules. In a reinforcement learning context, however, this becomes a decision-

making problem instead. In this case, the decision maker is the RL agent. Instead, its environment is a network of 

traffic flowing through the system. The agent observes the current network state of the game and takes action to 

create a new rule, modify an old one, or do nothing. The agent receives a reward or penalty based on the outcome, 

such as improved security or the blocking of legitimate traffic. With each cycle, this feedback can help the agent 

learn a policy: a collection of actions that results in the best outcomes (21). Unlike a simple classification, the FPGP 

differs in its sequential nature and decisions based on the cumulative effect of previous rules. For example, there 

might be some rules that override or conflict with each other, which makes the generation task more complex. 

 

3.2 Representation policies 

For the RL agent to send a fine-tuned representation of a firewall, it can manipulate a firewall policy that consists 

of individual rules with a tuple-like structure. A rule can be described as each of those. They display (action, source 

IP, destination IP, protocol, port, direction, and priority) and evaluate those using simple trigonometric functions. 

For instance, a rule such as (block, 192.168.1.10, any, TCP, 80, inbound, high) may be defined to block incoming TCP 
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traffic (port 80) from the IP address 192.168.1.10. This structure must be converted into numerical or categorical 

values that the agent can process in a reinforcement learning system. The rule can be encoded or embedded by 

each component of the control, such as the IP address or protocol. So, the policy (in this case) can be viewed as a 

list of these rules; that is, the rule constitutes the action space available to the agent. During learning, the agent 

may add a rule, delete one, or reorder the list to increase its effectiveness. Each component of the firewall rule is 

encoded or embedded according to its data type, as shown in the table below 

 

Table 1: Firewall Policy Rule Representation 

 

Component Description Data Type Example 

Action Allow, Block, Log, Rate-limit Categorical (1 = allow) 

Source IP Originating IP address Encoded String 

Destination IP Target IP address Encoded String 

Protocol Type of protocol (e.g., TCP, UDP) One-hot encoded 

Port Source or destination port Integer 

Direction Traffic direction (Inbound/Outbound) Binary (0 = in, 1 = out) 

Priority Rule application priority Integer or ordinal rank 

 

3.3 Objectives and Constraints. 

The way forward is to consider any system that automatically generates firewall policies as one that must 

simultaneously satisfy several key objectives. Among these, the first is security, which involves effectively blocking 

unauthorized traffic and preventing malicious activity from occurring. In addition, the system must maintain 

network performance by allowing legitimate traffic to flow smoothly without inducing high latency or disrupting 

critical business services. Just as important is minimizing false positives and false negatives: it's distracting to users 

and limits their productivity if safe traffic is blocked or if dangerous traffic is allowed through. Therefore, the system 

must be carefully balanced by these competing factors. 

The policy must also be dynamically responsive to changes in the environment, adapting to the network's growth 

or refining itself to address new threats as they emerge (3). Finally, a set of policies should be kept as concise and 

manageable as possible, as excessively long lists of rules can be challenging to audit, maintain in sync, and read. 

However, achieving these objectives is difficult, as improving one domain may at the same time make the other 

worse—for example, tightening the policy may reduce threats but lead to many false positives. As a result, the 

system will have to learn and balance these trade-offs to generate optimal and efficient firewall policies. 

 

3.4. Challenges in Policy Generation 

Firewall policy generation is a complex task in its own right. The main issue is that rules interact with each other in 

complex ways; firewalls process rules in sequence, and one rule can trump or cancel out another. Small changes 

can give rise to significant and unexpected consequences, which makes it hard to imagine the consequences of 

introducing a new rule without testing it carefully. The other challenge is real-time adaptation—networks run 

continually and need instant changes to the policy to address any upcoming threat. At the same time, reinforcement 

learning models are capable of learning and evaluating outcomes, which necessitate slowing down, as they need to 

result in necessary changes.  

The scalability problem arises particularly in large networks, such as those with thousands of devices, where the 
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number of possible combinations of rules further grows exponentially. Without being inundated by the volume of 

data, the system must be able to make fast and efficient decisions. Moreover, a rule is often applied without 

immediate feedback on its effectiveness, as problems may not appear until later, for example, when rare traffic is 

blocked or when attackers find an easy way around protections. The learning and optimization process becomes 

more challenging since this feedback is necessarily delayed. When designing a reinforcement learning system to 

generate firewall policies, addressing these challenges is crucial. The following will focus on the basics of 

reinforcement learning and highlight how it can be effectively adapted to solve practical problems (28). 

 

4. Reinforcement Learning Fundamentals 

The goal is to apply reinforcement learning (RL) to the generation of firewall policy, and the first step is to 

understand how RL works. Compared to other machine learning techniques, RL differs in that it focuses on learning 

through interaction. This section describes how reinforcement learning works, its key components, and its 

applications in network security (18). 

As shown in Figure 2, a policy-based RL system involves several components: the agent, the environment (in this 

case, the network traffic system), a policy module (which decides the agent’s actions), and a reward mechanism 

(which evaluates the effectiveness of those actions). 

 
Figure 2: Diagram of a Policy-Based Reinforcement Learning System 

 

4.1 Reinforcement Learning Basics 

In machine learning, reinforcement learning is a type of learning where an agent learns while interacting with an 

environment. It is observed that the agent receives state information, and then feedback in the form of a reward 

or penalty is provided. The agent then updates its strategy based on this feedback with the hope of better actions 

in the future. Over time, the process continues, allowing the agent to learn how to maximize total rewards. 

Reinforcement learning works through trial and error and experience, unlike supervised learning, which depends 

on labelled data. The agent then explores different actions and learns which one is the most effective way for it to 

reach its goals. A key component of reinforcement learning (RL) involves four main elements: the environment (in 

which the agent operates), the state (representing the current situation of the environment), the action (the 

decision made by the agent), and the reward (which signals the effectiveness of the agent’s decision). As illustrated 



AMERICAN ACADEMIC PUBLISHER 

 

  

https://www.academicpublishers.org/journals/index.php/ijiot 196 

 

in Table 2, the RL agent acts as the policy generator, interacting with a network environment that provides real-

time traffic data, while the state, action, and reward are defined to reflect network conditions and policy 

effectiveness. 

 

Table 2: Reinforcement Learning Mapping for Firewall Policy Generation 

RL Component Firewall System Equivalent 

Agent RL-based policy generator 

Environment Network with real-time traffic flow 

State Current snapshot of the network and threat indicators 

Action Generate, modify, delete, or reorder firewall rules 

Reward Feedback based on rule effectiveness: security, performance, simplicity 

 

4.2. Markov Decision Processes 

Many reinforcement learning models are built from something called a Markov decision Process, or MDP. The 

decision-making problem is described mathematically, known as an MDP. It has a set of possible states, a set of 

actions the agent can take, a reward function that tells the agent what it gains for each action, and a transition 

function that describes how the environment transitions from one state to another. The property defines an MD P 

that allows the future to depend not only on the current state but also on the current action, regardless of how it 

arrived in that state (30). It makes things easier to learn. The state could include current traffic statistics, recent 

alerts, and the current rule set for generating firewall policies. The available actions are to add a new rule, modify 

an existing rule, or take no action. However, the reward would be a function of how well the new policy performed 

— e.g., how much bad traffic it blocked or how much good traffic it disrupted. 

 

4.3 Exploration vs. Exploitation. 

The balance between exploration and exploitation is one of the central ideas in reinforcement learning. Trying new 

actions to learn about the environment is called exploration. Exploitation is using what the agent already knows to 

make the best decision. The agent in firewall policy generation must navigate various rule sets to find the most 

effective ones. However, it must also avoid constantly changing the rules, which risks poor performance. Managing 

this balance is essential: if the agent explores too little, potential improvements may be missed; if it explores too 

much, unnecessary disruption results. Similarly, overexploiting too early may cause the agent to settle on a good 

policy but not the best (29). 

 

4.4 Reward design and feedback loops 

Reinforcement learning has a vital role in reward functions. This directly affects the behavior of the agent. Network 

security has a range of goals to achieve: stopping threats while avoiding false alarms, maintaining high performance, 

and adapting to changes. Designing a reward function is not an easy task. It must be able to provide helpful feedback 

even in cases where the results of a decision aren’t immediately visible. For example, one rule may block an attack, 

but its benefit will not be apparent for hours later. A rule that appears quite sensible can surprise in peak usage, 

just as a rule can work fine for a while and then cause problems. Feedback loops are one way to improve on this. 

The RL model feeds back into the system that continuously monitors network performance and security logs. It 

means that the agent will not only learn based on immediate rewards but also consider some long-term effects. 
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4.5 The Study of RL in Firewall Policy Generation 

Due to these reasons, reinforcement learning is well-suited for generating firewall policies (34). It first tackles the 

issue of decision-making over time, which is apropos of the dynamic nature of network security. Second, it can learn 

from interactions, which is essential when there are not many samples of the ideal policies to train on. Thirdly, it is 

adaptive. Since the network and threats continue to evolve, the RL agent can still learn and improve. 

 

5. System Architecture 

The automated firewall policy generation using a reinforcement learning system architecture incorporates several 

critical components that operate in real time. These components enable the collection and processing of network 

data, allowing the generation of intelligent policies and their enforcement within the firewall infrastructure. This 

section explains the architecture's structure, highlighting the role of each component and how the overall system 

can be integrated into network environments (6). As illustrated in Figure 3, the system supports parallel parsing to 

ensure scalability and efficiency. Incoming data is processed across multiple threads or nodes simultaneously, 

allowing the architecture to handle high-volume traffic without bottlenecks. 

 

 
Figure 3:  Distributed Firewall (DFW) 

 

5.1 High-level Architecture Overview 

The architecture is straightforward and robust. The flow of data from the network traffic monitor to the feature 

extractor, the reinforcement learning–based policy generator, and the policy enforcement engine. It forms a closed 

loop whereby the system monitors network behavior, makes reasonable and intelligent decisions, and applies 

existing firewall rules. This architecture is designed to operate near real-time, detecting changes in the network, 

analyzing them, and responding without delay (27). The system can remain ahead of advancing threats without 

manual updates by automating this process. The entities are flexible and well-suited for different types of 

infrastructure, ranging from small-scale to large-scale enterprise systems. All the modules communicate with each 

other so that they can make decisions as easily as possible and enforce actions without affecting each other or 

causing chaos. 
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5.2 Key components 

Four main components constitute the system to automate the firewall process, and each contributes to a particular 

step in the firewall automation process: 

Traffic Monitor 

This captures raw network traffic data, including packet headers, flow information, and metadata such as 

timestamps and source and destination IP addresses. It is a real-time feed that the rest of the system sits on. To tap 

into the network, this module may be able to do so using port mirroring, packet sniffing, or integration within 

existing monitors. 

Feature Extractor 

Next, once the data is captured, it must be processed in a form that a reinforcement learning agent can understand. 

It parses the traffic data and identifies the protocols used, port numbers, connection durations, and other relevant 

information, as well as suspicious patterns. These are the state features that the RL model will use to make its 

decision. 

This is the RL Policy Generator. 

The reinforcement learning agent is at the heart of the system. Given the extracted features and the state of the 

network, it selects the optimal action. It could involve creating a new rule, changing an existing one, or perhaps 

there is no need for any change at all. Over time, the agent receives feedback on which decisions improve network 

security and performance and learn from this. 

Policy Enforcement Engine 

An FMC is responsible for linking records between applications, such as a Web application and a backend database 

server, and enforcing traffic direction through a firewall or filtering out security threats. The last part interprets the 

decisions made with the RL model into actual firewall rules (20). The rules of these lies are applied to the firewall in 

real time to control the flow of network traffic. Safety and caution are built into this engine, which, whenever 

possible, simulates the effects of rules before deployment. It also features a rollback mechanism that allows for the 

quick undoing of changes. 

 

5.3 Data Flow Process. 

Packets flow through the network, and that is where the entire process starts. The Traffic Monitor continuously 

captures these packets, taking no performance toll on our networks. These packets are passed into the Feature 

Extractor, where features are extracted from the data, generating clean, labelled data points. This includes 

information such as destination port, protocol type, packet size, frequency of access by source port, and whether 

the source is internal or external. The RL Policy Generator takes this structured data as input. At each decision 

period, the agent examines the current network state and history and then selects an action to optimize the firewall 

policy. For instance, it could detect a surge of failed connection attempts originating from a specific IP and 

subsequently block that IP. 

When an action is chosen, the Policy Enforcement Engine transforms it into a rule, for example, “blocking incoming 

TCP connections from IP X on port Y.” This rule is inserted into the firewall rule set. Finally, the firewall is updated 

while the system remains responsive to existing sessions and adaptive against malicious attackers. This entire 

process is repeated continuously to keep the system current with network behavior and adapt to new threats in 

real time. After integrating existing real systems, challenges such as data duplication and significant differences 

among systems are resolved. The system is designed for practical adoption, compatible with widely used firewall 

platforms. It can communicate with Linux-based firewalls such as iptables, open-source firewalls like pfSense, and 

commercial firewalls like Cisco ASA. Brown abstracts the system calls, APIs, or configuration interfaces provided by 

these platforms into this integration. The Policy Enforcement Engine shares updates with the firewall’s rule 
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management system when deployed in a live environment. It ensures rules are syntactically valid and follow the 

business rules that the platform currently operates under. This compatibility also ensures organizations do not need 

to replace their existing infrastructure to benefit from RL-based policy automation. Additionally, safety mechanisms 

are integrated into the rules to prevent disruptions. For instance, the system can apply new rules in a sandbox 

environment before deploying them to the live firewall. This intelligent automation is introduced without degrading 

system stability or user experience (25, 5). 

 

6. Methodology 

The section elaborates on the way the reinforcement learning system is developed and trained to generate an 

automated firewall policy. It details how data is collected and processed, how the model is structured, how learning 

is guided, and how to evaluate system performance. The objective is to develop a system that responds to threats 

in an innovative manner while maintaining a secure and robust network environment. 

6.1 Data collection 

High-quality network traffic data is needed to train and evaluate the reinforcement learning model. Publicly 

available and custom-simulated datasets are used in this project (24). The public intrusion detection datasets (e.g., 

CICIDS2017, UNSW-NB15) are the primary sources, consisting of traffic logged in controlled environments along 

with a mix of regular and malicious traffic. These datasets are widely used in the research community and contain 

labelled traffic examples, including DoS attacks, brute force attempts, port scanning, and other typical threats. 

Other datasets were also developed based on real traffic, and traffic was also simulated within a controlled testbed 

environment. Such a setup emulated a diverse set of user activities, server operations and network attacks. Because 

the data is simulated, the model can be tested under various specific conditions, including rare (or novel) attacks 

that may not be present in public datasets. Training the model on a combination of real-world and simulated data 

helps ensure that it is trained on realistic and diverse examples, which significantly improves its generalization 

capabilities. 

The datasets used for training and evaluation are summarized in Table 3, detailing the source type, traffic types 

included, labeling status, and the intended purpose of each dataset 

 

Table 3: Datasets Used for Training and Evaluation 

Dataset Name Source Type Traffic Types Included Labeling Purpose 

CICIDS2017 Public 
DoS, DDoS, Port Scans, Infiltration, 

Benign 
Yes Training & Validation 

UNSW-NB15 Public 
Shellcode, Backdoors, Worms, 

Fuzzers, Benign 
Yes Benchmarking & Testing 

Simulated Testbed 

Data 

Custom-

Simulated 

File transfers, web browsing, brute 

force, zero-day 
Yes 

Scenario-specific model 

evaluation 

Real Traffic Logs 
Real-World 

Capture 

User activity, traffic bursts, protocol 

shifts 
Partial 

Realism injection during 

training 

 

6.2 Feature Engineering 

Next is the step of extracting meaningful features about each network flow or packet using the collected data? The 

reinforcement learning model takes as input these features, whose role is to represent the essential components 

of the network's behavior accurately. A typical feature of data related to network traffic includes source and 
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destination IP addresses, port numbers, protocol types, packet sizes, and section durations. These indicators help 

the model distinguish between standard patterns and suspicious traffic patterns. Various preprocessing are applied 

to prepare the data for learning. Protocol types, such as categorical features, are encoded into numeric values using 

one-hot or label encoding methods. For instance, features such as packet size or connection duration are 

continuous and normalized to the same scale to prevent large values from skewing the model's results. It alleviates 

the problem of noise by reducing features to those that consistently contribute to the decision-making process and 

consequently improves the model's accuracy. 

 

6.3 Design of state-action space 

Reinforcement learning agents require the "state" of the environment to be well-defined and a list of valid "actions" 

to take. In such a system, the state comprises the current status of the network, real-time traffic counts, threat 

indicators and the present set of firewall rules. The RL agent can operate within this context if it understands the 

state, which provides information about the network's current state, including its ongoing activity, given the agent's 

possible actions in a specific time step. Possible actions include allowing or blocking traffic, logging it for further 

inspection, rate-limiting suspicious traffic, and modifying and reordering firewall rules. In doing so, these actions 

provide the agent not only with the ability to respond to impending threats but also with the means to perform 

optimally and effectively over time. 

 

6.4 Reward Function Design 

Feedback is central to guiding the agent’s learning on whether the agent’s actions are desirable. The reward in this 

system comes at the expense of security, performance, and policy simplicity. Thus, the agent receives positive 

rewards for blocking malicious traffic or permitting legitimate traffic. It is penalized if it blocks safe connections 

(false positives) or allows the attacks through (false negatives); otherwise. The agent is also penalized for producing 

too many rules or overly specific rules, which can prevent the development of bloated and overly complex policies. 

Further penalties are inflicted when the rules cause high latency and when the rules are too frequently changed. 

The reward structure of this problem motivates the agent to learn a policy that can perform well on both threat 

mitigation and maintaining network performance simultaneously. 

 

6.5 Model Selection and Training 

Automated firewall policy generation is complex, and therefore, selecting the appropriate reinforcement learning 

algorithm is essential. Some notable algorithms include Deep Q-Network (DQN), Proximal Policy Optimization 

(PPO), and Asynchronous Advantage Actor-Critic (A3C). DQN, however, is a value-based method that works well in 

problems with an ample action space. As a method that ranges from minor to medium-sized, stable, and efficient 

policy-based methods, it balances exploration and exploitation. A3C is a parallel learning approach that learns by 

running multiple agents in parallel. Since PPO is stable, easy to tune, and has demonstrated strong performance in 

comparable control problems, it was chosen for this project (7). Many episodes, which involve agents interacting 

with environments and updating their policies, utilize the rewards they receive to inform their subsequent actions. 

Using an exploration strategy, such as epsilon-greedy, is beneficial to balance the discovery of new actions with 

leveraging known effective policies. The agent will continue to be trained until its performance reaches a relatively 

strong level of non-degeneracy and degeneracy. 

 

 

6.7 Policy Change Mechanism. 

What is important after training is to regularly relearn the policy to maintain its effectiveness in dynamic network 
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environments over time. Of the two main learning strategies, one involves on-policy learning, which occurs while 

actively using the current policy, and the other is off-policy learning, which consists of learning from past 

experiences. It employs a hybrid approach that combines recent data with historical knowledge, enabling 

responsiveness to new threats while retaining previously collected insights. The training occurs periodically or when 

the network environment undergoes a significant change. Before deployment, the updated policies are validated 

in a test environment to ensure stability without causing unplanned disruptions. 

 

6.7 Metrics Evaluation 

Multiple metrics are used to evaluate system performance. These metrics measure the accuracy of the agent—that 

is, how often it correctly chooses to allow or block traffic. The quality of false positive and false negative rates 

indicates the effectiveness of threat detection. Additionally, firewall policies should not be changed in ways that 

significantly affect legitimate users in the system. Finally, any increase in latency due to firewall rules is monitored 

to ensure it does not significantly impact traffic flow. These metrics are applied throughout both the training and 

deployment phases to track the learning progress and the system’s real-world performance. A well-performing 

system should maintain high accuracy and low false detection rates while imposing negligible impact on network 

latency (19). 

 

7. Experimental Setup 

This paper describes the environment and tools used to assess the automated firewall policy generation system, as 

well as the techniques employed for comparing the system's performance relative to baselines. 

7.1. Simulation Environment 

Several simulation environments were employed to achieve sufficient flexibility and realism in the system under 

test (10). They were using Mininet, NS-3, and a setup of the cloud lab in a virtualized environment. With Mininet, 

one could create realistic software-defined network topologies with controllable hosts and switches, allowing for 

detailed packet-level analysis. The discrete event network simulator NS-3 was used to model complex network 

protocols and traffic flows, which could be used for stress-testing the RL policy under various conditions. A near-

realistic environment was created by housing virtual machines in the virtualized cloud lab, simulating typical 

enterprise network components for deploying and testing firewall policies. 

As shown in Figure 4, the simulation environment also incorporated the SLR protocol for coordinating simulation 

events and logging outcomes consistently across the different tools and layers of abstraction. 
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Figure 4: SLR Protocol Used. 

 

7.2 Traffic Generation Tools. 

An assortment of tools were used to simulate network traffic. Hping3 was used to send custom TCP, UDP, or ICMP 

packets, allowing customization to craft attack patterns such as SYN floods or port scans. The public datasets 

replayed captured traffic traces, allowing for the simulation of realistic network loads using TCPreplay. However, 

an automated framework utilizing the Metasploit system was able to launch known exploits and penetration testing 

attacks against the system, thereby challenging its ability to detect such attacks. Custom scripts were also created 

to build specific traffic scenarios and combinations of benign and malicious flows, covering all cases in testing. 

 

7.3 Baseline Systems 

Several baseline systems were evaluated to see how the reinforcement learning-based firewall policy generation 

fares. These are static firewall policies that are manually configured by network administrators, representing 

traditional, and fixed-rule approaches. Furthermore, he included heuristic rule-based systems, which seek to detect 

common attack patterns using predefined threshold or signature-matching rules.  Mixed traffic scenarios were used 

for testing, combining benign and malicious flows (4). Network environments were simulated in these scenarios to 

contain different ratios of attack traffic. The evaluation involved monitoring to ensure that the system correctly 

allowed legitimate traffic through while blocking or mitigating malicious activity. Detection accuracy, false positive 

and negative rates, policy enforcement latency, and rule update frequency were recorded to obtain a 

comprehensive performance profile for these metrics (23). 

 

8. RESULTS AND ANALYSIS 

The reinforcement learning model is trained, and the results are presented. The effectiveness of the generated 

firewall policies is evaluated, and their performance is compared to that of baseline systems. 

 

8.1 Results from Training 

During training, the RL agent demonstrated steady progress, consistently improving its cumulative rewards across 

multiple episodes, indicating the learning of effective firewall policies. The learning curves converged within a 

reasonable number of cycles, which helps demonstrate the stability of the chosen PPO algorithm. In early episodes, 

there was obvious exploration and fluctuating rewards. Still, as training proceeded, the decisions made by the agent 
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became more sophisticated, wherein security measures were chosen to their fullest potential while unnecessary 

traffic blocking was avoided. Smooth reward trends in the late training stages are representative of the agent 

learning to satisfy multiple objectives, such as simultaneously blocking attacks without compromising legitimate 

connections. 

The bar graph below illustrates the RL agent's training progress. It shows a steady increase in cumulative rewards 

across episodes, reflecting the agent’s improved decision-making over time.  

 

 
Figure 5: RL agent's training progress 

8.2 Effectiveness of Policy 

An analysis was conducted to demonstrate that a significant increase in threat detection and mitigation was 

achieved when comparing the network behavior before and after the application of appRL-generated behavior 

between firewall rules. These adaptive policies, created by the agent, were proven to be more flexible than static 

rules because they could adjust themselves to emerging threats on the fly. For instance, when tested in simulated 

attack scenarios, the RL-based policy prevented unknown and/or poorly policed malicious flows. The system also 

maintained low false favorable rates, meaning that fake traffic seldom disrupted legitimate traffic, which is critical 

for both user experience and operational continuity (16). 

 

8.3 Case Studies  

The system is further illustrated through specific case studies that highlight its practical impact (14). During 

Distributed Denial of Service (DDoS) attack simulations, the RL policy quickly adapted to detect and respond to 

abnormal traffic spikes. It enacted rules to throttle or block offending sources, thereby minimizing network 

congestion. For cases of SYN flood attacks, the system learned to filter suspicious connection requests while 

maintaining customary TCP handshakes. It also effectively blocked probing attempts at port randomization by lying 

and blocking probing behavior, leaving the standard service ports unaffected. For data exfiltration attempts, the 
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adaptive policy identified unusual outbound traffic patterns, terminating data exfiltration attempts and preventing 

sensitive information leaks, which demonstrated the effectiveness of the threat coverage in place. 

As illustrated in the Figure below, these use cases are supported by a cloud-based attack simulation platform that 

demonstrates the RL agent's robust, context-aware responses in real time. 

 
Figure 6: cloud-based-ddos-attack-platform 

 

8.4 Comparative Performance 

RL-based firewall generators outperformed other baseline systems, such as static and heuristic rule-based 

approaches, in various dimensions when compared with them. RL policies adapted to changing traffic conditions by 

remaining fixed, whereas static policies changed while providing higher detection rates and better quality of 

generated rules. In comparison to traditional machine learning classifiers, the RL system exhibited better 

throughput and a minor latency impact, resulting in higher throughput due to its ability to optimize rule sets and 

avoid unnecessary overhead. At the same time, the false favorable rates were notably reduced, indicating that the 

discrimination between benign and malicious traffic became more precise. The effectiveness with which 

reinforcement learning manages these complex, evolving network security challenges confirms these results. 

As shown in Table 4, reinforcement learning approaches demonstrate superior adaptability, detection rates, and 

rule optimization compared to static rule-based systems and traditional machine learning classifiers 

 

Table 4: Comparative Performance of RL-Based Firewall Systems vs Traditional Approaches 

Performance Metric Static Rule-Based Systems Traditional ML Classifiers 
Reinforcement Learning (RL) 

Approach 

Adaptability 
Poor – does not respond to 

new threats 

Moderate – retraining 

required 

Highly adaptable to real-time 

traffic dynamics 

Detection Rate Moderate High Very High 

False Positive Rate High Moderate Low 

False Negative Rate High Moderate Low 

Rule Optimization Manual and rigid Requires tuning 
Dynamic and optimized via 

learning 
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Performance Metric Static Rule-Based Systems Traditional ML Classifiers 
Reinforcement Learning (RL) 

Approach 

Latency Impact Low Moderate Minor 

Throughput Moderate Moderate 
High – due to leaner and smarter 

rule sets 

Maintenance 

Overhead 

High – frequent manual 

updates 

Medium – needs retraining 

and tuning 
Low – self-adjusting rules 

Suitability for Evolving 

Threats 
Low Moderate High 

 

9. Challenges and Limitations 

9.1 Computational Requirements 

While the results are promising, a major challenge is that training complex reinforcement learning models can be 

computationally expensive (11). Simulating these problems in realistic and dynamic network environments requires 

these models to run for extended periods and utilize demanding computing resources. This may limit the number 

of times retraining will be allowed and, in turn, delay the system’s ability to react quickly to emerging threats. 

Moreover, the model must infer speedily while deployed in the live scene. Latency resulting from this may hurt 

network performance, providing visibility to the system when traffic is changing rapidly or exposing the system to 

vulnerabilities. 

As shown in the Figure below, the fundamental architecture supporting this system must balance real-time policy 

generation with high-throughput data processing. It outlines how the model interfaces with data ingestion, feature 

extraction, policy evaluation, and action enforcement components within a resource-optimized loop. 

 
Figure 7: Basic architecture for FL 
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9.2 Explainability Gap 

Another critical limitation when utilizing RL-generated policies is the interpretability of those policies (12). The agent 

creates firewall rules that often involve complex, non-intuitive combinations, making them difficult for human 

administrators to understand or audit. In security configurations that require high validation, compliance, and 

explainability, this lack of transparency can undermine trust and acceptance of automated policy systems. 

Reinforcement learning also involves an exploration phase, which carries inherent risks. During this phase, the agent 

experiments with various actions to find optimal policies but may accidentally block legitimate traffic or allow 

malicious flows. If not carefully controlled, this trial-and-error process can cause disruptions or security gaps. In live 

networks, these mistakes can be severe; therefore, it is imperative to implement safe exploration and fallback 

strategies to minimize potential damage during training (31, 32). 

 

10. Future Work 

10.1 Transfer Learning 

Transfer learning techniques can be applied to reinforcement learning-based firewall policy generation, 

representing a promising direction for future research. By reusing policies learned in one network environment, the 

system can adapt more quickly to similar or evolving network conditions without requiring extensive retraining 

from scratch. This approach would enhance both efficiency and responsiveness, particularly in dynamic, large-scale 

deployments where network traffic and threat landscapes frequently change (33). 

 

10.2 Multi-Agent Systems 

Another important area of exploration is leveraging multi-agent reinforcement learning to allow coordinated policy 

generation across distributed firewalls or enterprise networks. With such systems, multiple agents' shared 

information is optimized, providing a more holistic and adaptive defense mechanism for complex architectures. 

As illustrated in the Figure below, multi-agent reinforcement learning in action involves agents interacting not only 

with their local environments but also with each other, exchanging state or reward signals to align on global policy 

objectives. 

 
Figure 8: deep-reinforcement-learning-in-action 
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10.3 Explainable RL. 

Despite considerable progress in reinforcement learning, improving the explainability of learned policies remains a 

significant challenge (35). Future work could focus on developing methods to make learned rules more interpretable 

and transparent, allowing administrators to audit, trust, and improve automated decisions. A few techniques from 

explainable AI (XAI) can be applied to render those policy changes human-understandable. Future implementations 

would incorporate the RL-based firewall system with a Security analytics platform for decision-making. By utilizing 

more contextual data and real-time threat intelligence, the RL agent can make informed policy adjustments based 

on the overall network security posture, thereby enhancing detection accuracy and response times. 

 

10.4 Hybrid learning approaches 

The ability to embed reinforcement learning in a supervised manner provides an avenue to increase model 

performance. Training the system on labelled attack datasets during supervised phases, optimizing the policy 

concurrently, and employing a hybrid learning approach may produce firewall policies that are more robust and 

effective than those generated by using either reinforcement learning or supervised learning alone (17). 

 

12. Recommendations 

Practical recommendations are proposed to harness reinforcement learning effectively (RL) for firewall policy 

automation. For this reason, organizations are advised to initially adopt a hybrid deployment approach that 

combines manual oversight with automated policy generation. During this transition, the safety of operation and 

trust in the RL system are maintained, enabling human experts to monitor and intervene if deemed necessary. It is 

a phased rollout that minimizes disruption and allows the technology to spread more smoothly (2). It is equally 

critical to enforce robust policy validation protocols. RL-generated policies must be extensively offline-tested on 

extensive, realistic, and real-world data sets before deploying them to live environments. This step eliminates the 

risk of a false positive, preventing legitimate traffic from being blocked. The robustness and responsiveness of the 

learned policies under various types of threats can be carefully benchmarked and also simulated in attack scenarios. 

Another essential feature of an effective RL-based firewall is continuous monitoring. Feedback loops that allow an 

RL agent to learn from new traffic behavior should be coupled with real-time performance tracking. The adaptability 

of the system ensures that it withstands the offensive change and that it adapts changes to a dynamic environment, 

achieving optimal results with and achieving modular yet synergized with other security tools, such as Security 

Information and Event Management (SIEM) systems, Intrusion Detection/Prevention Systems (IDS/IPS), and threat 

intelligence feeds, it enables increased contextual insight into the incident it is intended to manage, improving its 

decision-making. This synergy allows for the RL agent to adjust its policy in a more informed and situationally 

relevant manner. It is organizational readiness that makes the difference in implementation. RL model behavior 

needs to be trained by the security team, and any interpretations or corrective actions must be taken as required. 

The human-in-the-loop governance model ensures trust and accountability that can be consistent with existing IT 

security protocols, paving the way for sustainable, intelligent firewall automation (15). 

 

12. CONCLUSION 

The results demonstrate that reinforcement learning can effectively automate the generation of firewall policies 

while potentially alleviating the increasing complexity of network security management in such environments. It 

learns the optimal policies to adapt to ever-changing network threats dynamically, balancing conflicting security 

requirements with the need for efficient network performance. Experimentation was performed in the system, and 

through it, a marked improvement in key performance indicators was observed, including increased detection 
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accuracy and reduced false positives, which is critical to limiting the amount of unnecessary disruption to legitimate 

network traffic. Notably, latency was not sacrificed to achieve these gains; therefore, reinforcement learning holds 

promise for practical application in real-world firewall automation scenarios, where low latency is critical to 

maintaining smooth network operation. 

This research core comprises several key contributions that expand both the theoretical knowledge base and the 

practical application of RL in cybersecurity. In addition, the study outlines a new system architecture that enables 

and integrates existing firewall management frameworks with reinforcement learning algorithms, making this 

combination practically feasible. This allows the continuous refinement of such policies in response to real-time 

observations of the network, thereby bridging the gap between automated decision-making and enforceable 

security measures. Second, a comprehensive methodology was adopted, encompassing all building blocks of the 

workflow, from collecting and preprocessing various network data to performing intelligent engineering of the 

network features and designing a reward function to achieve the goal of securing the environment in the real world. 

A rigorous methodological design ensures that the model not only learns effective policies but also generalizes well 

to various network conditions and threat profiles. Thirdly, in a thorough evaluation against a wide array of threat 

scenarios, including denial-of-service attacks, port scans, and attempts at data exfiltration, the system is 

demonstrated to be effective and robust in addressing complex cybersecurity problems. Collectively, these 

contributions extend the state of the art of AI-driven network security towards putting reinforcement learning into 

production in environments more typically governed by static or manually administered rules. 

These findings have profound implications for network security. This research is a step toward developing real-time, 

adaptive, and intelligent firewall systems whose responses are also autonomous in the face of the ever-changing 

landscape of cyber threats. Through the ability to adapt policies based on experience, firewalls can become more 

resilient against sophisticated attacks while being less and less dependent on human intervention. This takes the 

weight off the shoulders of security administrators, allowing them to focus on strategic defense, such as 

fingerprinting, rather than frequent rule upgrades. In addition, adaptive systems provide more proactive defense 

approaches; that is to say, they forecast and prevent damage from occurring, reflecting cybersecurity needs in an 

accelerated digital environment. 

Though promising, this study also notes that there is certainly more research to be done. However, it is essential to 

note that there remains a significant opportunity to enhance explainability for reinforcement learning–based 

firewall policies. With learned policies, the complexity and opacity cause issues for human comprehension and trust, 

which are prerequisites for adoption into operational environments with extensive compliance and auditing 

requirements. Moreover, these models need to be made robust and generalizable so that they can behave 

consistently with varying network architectures and traffic patterns. Addressing all of these limitations will require 

interdisciplinary efforts that combine reinforcement learning with other artificial intelligence techniques and 

cybersecurity frameworks. Additionally, future work should be conducted to explore mechanisms for seamless 

integration with other existing security infrastructures (e.g., Security Information and Event Management (SIEM) or 

Intrusion Detection System (IDS)) to provide a broader context for informed decision-making. Advancing these areas 

will help pave the way for production-ready, secure, and explainable firewall systems powered by reinforcement 

learning, which are essential for addressing modern network security challenges. 
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