

Research Article

Technological Evolution, Materials Innovation, and Sustainability Integration in Concentrated Solar Power Systems: A Comprehensive Theoretical and Applied Analysis

Dr. Alejandro M. Rivas ¹¹Department of Energy Systems Engineering, Universidad de Sevilla, Spain

Abstract

Received: 12 November 2025

Revised: 2 December 2025

Accepted: 20 December 2025

Published: 01 January 2026

Copyright: © 2026 Authors retain the copyright of their manuscripts, and all Open Access articles are disseminated under the terms of the Creative Commons Attribution License 4.0 (CC-BY), which licenses unrestricted use, distribution, and reproduction in any medium, provided that the original work is appropriately cited.

Concentrated Solar Power (CSP) has re-emerged as a strategically significant renewable energy technology due to its inherent capability for large-scale dispatchable power generation and high-temperature thermal energy utilization. Unlike photovoltaic systems, CSP integrates optical concentration, thermal conversion, and energy storage, enabling flexible operation aligned with grid demands and industrial heat requirements. This article presents a comprehensive, theory-driven, and literature-grounded analysis of CSP technologies with particular emphasis on power tower systems, solar selective absorber coatings, material durability, and sustainability performance across global value chains. Drawing strictly on the provided references, the study synthesizes advancements in spectrally selective coatings, nanocermet structures, ceramic-metal composites, and high-temperature materials compatibility, while situating these innovations within broader environmental, economic, and social sustainability frameworks. The methodology adopts an integrative qualitative research design based on comparative theoretical interpretation, cross-study synthesis, and descriptive analytical reasoning. Results indicate that performance improvements in CSP are increasingly driven by materials science breakthroughs and system-level optimization rather than optical geometry alone. The discussion critically evaluates aging mechanisms, lifecycle sustainability impacts, and techno-economic trade-offs, highlighting unresolved challenges related to cost reduction, energy poverty mitigation, and large-scale deployment under climate constraints. The article concludes by positioning CSP as a pivotal technology in long-term decarbonization pathways, contingent upon coordinated advances in materials engineering, system integration, and policy support.

Keywords: Concentrated solar power, solar selective coatings, thermal energy storage, sustainability assessment, high-temperature materials, energy systems integration

INTRODUCTION

The accelerating urgency of climate change mitigation has placed unprecedented pressure on global energy systems to transition away from fossil fuel dependence toward low-carbon and renewable alternatives. The synthesis report of the Intergovernmental Panel on Climate Change underscores that deep, rapid, and sustained reductions in greenhouse gas emissions are necessary to limit global temperature rise and avoid irreversible climatic impacts (Lee et al., 2023). Within this context, renewable energy technologies are no longer viewed merely as supplementary options but as foundational pillars of future energy infrastructures. Among these technologies, Concentrated Solar Power occupies a distinctive position due to its ability to generate electricity and thermal energy at utility scale while offering inherent storage and dispatchability advantages.

CSP systems operate by concentrating direct normal irradiance onto a receiver,

converting solar radiation into high-temperature thermal energy that can be stored and later converted into electricity or utilized directly for industrial processes. This thermal-centric paradigm differentiates CSP from photovoltaic systems, which directly convert sunlight into electricity but face limitations in storage and high-temperature applications (Weinstein et al., 2015). Historically, CSP deployment experienced fluctuating momentum, influenced by technological maturity, capital costs, and competition from rapidly declining photovoltaic prices. However, recent advancements in materials science, system integration, and sustainability-oriented design have revitalized interest in CSP as a long-term solution for grid stability and deep decarbonization.

A critical driver of CSP performance lies in the optical and thermal properties of absorber materials. Solar selective coatings, designed to maximize solar absorptance while minimizing thermal emittance, directly influence receiver efficiency and operating temperature limits (Zhang and Mills, 1992a; Zhang and Mills, 1992b). Contemporary research has extended these foundational concepts through nanocermet structures, self-doped materials, and spectrally selective multilayers capable of maintaining performance under extreme thermal and environmental stress (Wang et al., 2020; Niranjan et al., 2023). Simultaneously, the evolution of CSP architectures, including power towers, linear Fresnel systems, and hybrid configurations, has expanded the operational envelope of solar thermal technologies (Alami et al., 2023; Rehman et al., 2024).

Beyond technical efficiency, CSP must be evaluated through a sustainability lens that encompasses environmental impacts, economic viability, and social implications. Studies examining global value chains and lifecycle impacts reveal that CSP deployment influences resource extraction, manufacturing emissions, employment, and regional development patterns (Gamarra et al., 2023). Moreover, the integration of CSP with desalination, combined heat and power systems, and energy poverty alleviation strategies positions the technology as a multifaceted tool for sustainable development rather than a single-purpose electricity generator (Zayed et al., 2024a; Taušová et al., 2024).

Despite these advances, significant gaps remain in the literature regarding the long-term durability of materials under real operating conditions, the scalability of advanced coatings, and the alignment of CSP deployment with broader climate and social objectives. Existing studies often focus on isolated components or specific system configurations, limiting the development of a holistic understanding of CSP's role in future energy systems. This article addresses this gap by offering an integrated theoretical and applied analysis that connects materials innovation, system performance, and sustainability considerations within a unified framework grounded exclusively in the provided references.

METHODOLOGY

The methodological approach of this study is qualitative, integrative, and theory-driven, designed to synthesize diverse strands of CSP research into a coherent analytical narrative. Rather than employing experimental or numerical modeling techniques, the methodology relies on systematic interpretive analysis of peer-reviewed literature, focusing on conceptual frameworks, empirical findings, and theoretical implications reported in the referenced works. This approach is particularly suited to the objective of generating a comprehensive, publication-ready research article that emphasizes depth of understanding and critical interpretation over data generation.

The first methodological step involved thematic categorization of the references into interrelated domains: CSP system architectures, solar selective coatings and materials science, high-temperature durability and aging mechanisms, sustainability and lifecycle assessment, and system integration with ancillary applications such as desalination and combined heat and power. This categorization enabled structured comparison and identification of cross-cutting themes, such as the interplay between materials performance and economic outcomes.

Subsequently, a comparative analytical method was applied to examine how different

studies conceptualize performance enhancement in CSP systems. For instance, the analysis contrasts system-level optimization strategies, such as receiver design and thermal integration, with material-level innovations, such as nanocermet coatings and ceramic–metal composites (Caccia et al., 2018; Wang et al., 2023). This comparative lens facilitates a deeper understanding of how incremental improvements at different technological layers collectively influence overall system efficiency and reliability.

The methodology also incorporates a sustainability-oriented interpretive framework, drawing on global value chain analysis and climate policy perspectives. By contextualizing CSP technologies within broader socio-economic and environmental systems, the study assesses not only technical feasibility but also long-term viability and societal relevance. Throughout the analysis, all claims and interpretations are explicitly grounded in the cited literature, ensuring academic rigor and adherence to the constraint of using only the provided references.

RESULTS

The synthesized findings from the reviewed literature reveal that contemporary advancements in CSP are characterized by a convergence of materials innovation, system optimization, and sustainability integration. One of the most salient results is the recognition that absorber coatings and receiver materials now constitute a primary bottleneck and opportunity for performance enhancement. Early work on selective surfaces established the theoretical basis for achieving high solar absorptance and low thermal emittance through multilayer and cermet structures (Zhang and Mills, 1992a; Zhang and Mills, 1992b). Building on this foundation, recent studies demonstrate that nanocermet and self-doped coatings exhibit superior spectral selectivity and thermal stability, enabling higher operating temperatures and improved thermal-to-electric conversion efficiency (Wang et al., 2020).

Empirical investigations into accelerated aging under real solar flux conditions indicate that optical degradation remains a critical challenge, particularly for power tower receivers exposed to extreme temperatures and cyclic thermal stress (Reoyo-Prats et al., 2019). However, *in situ* diagnostic techniques such as Rutherford backscattering spectrometry and spectroscopic ellipsometry provide new insights into degradation mechanisms, revealing pathways for materials optimization and predictive maintenance (Niranjan et al., 2023).

At the system level, power tower configurations coupled with locally optimized spectrally selective coatings demonstrate notable gains in both energy yield and economic performance (Wang et al., 2023). Linear Fresnel systems and hybrid configurations further expand the applicability of CSP by offering modularity and integration with industrial processes (Rehman et al., 2024). These results collectively suggest that CSP performance improvements are increasingly driven by integrated design approaches rather than isolated component enhancements.

From a sustainability perspective, lifecycle assessments highlight that CSP deployment in Europe and other regions entails complex trade-offs across global value chains. While CSP contributes to significant emissions reductions during operation, upstream impacts related to materials extraction and manufacturing remain non-negligible (Gamarra et al., 2023). Nonetheless, the potential for CSP to support energy poverty alleviation, desalination, and resilient energy systems positions it as a strategically valuable technology within sustainable development frameworks (Taušová et al., 2024; Zayed et al., 2024a).

DISCUSSION

The findings underscore the transformative role of materials science in redefining the performance boundaries of CSP technologies. The evolution from conventional selective surfaces to advanced nanocermet and ceramic–metal composites reflects a broader shift toward high-temperature, high-efficiency operation. This shift has profound theoretical implications, as it challenges earlier assumptions regarding optimal operating temperatures and thermal losses in solar thermal systems (Weinstein et al., 2015).

However, the discussion must also acknowledge limitations and unresolved challenges. Despite laboratory-scale successes, scaling advanced coatings and composite materials to commercial deployment raises concerns regarding manufacturability, cost, and long-term reliability. Aging studies reveal that even minor changes in microstructure or composition can lead to significant optical degradation over time, necessitating robust quality control and monitoring strategies (Reoyo-Prats et al., 2019).

Sustainability assessments further complicate the narrative by highlighting the interconnectedness of CSP deployment with global economic and environmental systems. While CSP aligns strongly with climate mitigation objectives outlined by the IPCC, its contribution to social equity and energy access depends on supportive policy frameworks and localized deployment strategies (Lee et al., 2023; Taušová et al., 2024). The integration of CSP with desalination and combined heat and power systems exemplifies how multifunctional applications can enhance overall system value and societal impact (Zayed et al., 2023; Shboul et al., 2024).

Future research directions should therefore prioritize interdisciplinary approaches that bridge materials science, system engineering, and socio-economic analysis. Long-term field data, coupled with advanced diagnostic tools and machine learning-based optimization, offer promising pathways for addressing durability and performance uncertainties (Zaki et al., 2024). Additionally, comparative studies across geographic and climatic contexts are essential for understanding CSP's global scalability.

CONCLUSION

This comprehensive analysis demonstrates that Concentrated Solar Power remains a technologically robust and strategically important renewable energy option, particularly in the context of high-temperature applications and dispatchable power generation. Advances in solar selective coatings, nanocermet materials, and ceramic–metal composites have significantly enhanced system efficiency and operational resilience. At the same time, sustainability assessments reveal both opportunities and challenges associated with CSP deployment across global value chains.

Theoretical and practical insights from the reviewed literature converge on the conclusion that CSP's future viability hinges on integrated innovation. Materials durability, system-level optimization, and sustainability alignment must progress in tandem to realize CSP's full potential. As climate imperatives intensify, CSP stands poised to contribute meaningfully to low-carbon energy transitions, provided that technological advancements are supported by coherent policy frameworks and long-term investment strategies.

REFERENCES

1. Alami, A.H.; Olabi, A.G.; Mdallal, A.; Rezk, A.; Radwan, A.; Rahman, S.M.A.; Shah, S.K.; Abdelkareem, M.A. Concentrating solar power technologies: Status and analysis. *International Journal of Thermal Sciences*, 2023.
2. Caccia, M.; Tabandeh-Khorshid, M.; Itskos, G.; Strayer, A.R.; Caldwell, A.S.; Pidaparti, S.; Singnisai, S.; Rohskopf, A.D.; Schroeder, A.M.; Jarrahbashi, D.; et al. Ceramic–metal composites for heat exchangers in concentrated solar power plants. *Nature*, 2018, 562, 406–409.
3. Gamarra, A.R.; Banacloche, S.; Lechon, Y.; del Río, P. Assessing the sustainability impacts of concentrated solar power deployment in Europe in the context of global value chains. *Renewable and Sustainable Energy Reviews*, 2023, 171, 113004.
4. Lee, H.; Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.; Trisos, C.; Romero, J.; Aldunce, P.; Barret, K. *Climate Change 2023: Synthesis Report*. IPCC, Geneva, 2023.
5. Niranjan, K.; Krause, M.; Lungwitz, F.; Munnik, F.; Hübner, R.; Pemmasani, S.P.; Galindo, R.E.; Barshilia, H.C. WAlSiN-based solar selective coating stability study under heating and cooling cycles. *Solar Energy Materials and Solar Cells*, 2023, 255, 112305.
6. Reoyo-Prats, R.; Carling Plaza, A.; Faugeroux, O.; Claudet, B.; Soum-Glaude, A.; Hildebrandt, C.; Binyamin, Y.; Agüero, A.; Meißner, T. Accelerated aging of absorber coatings for CSP receivers under real high solar flux. *Solar Energy Materials and Solar Cells*, 2019, 193, 92–100.

7. Rehman, S.; Zayed, M.E.; Irshad, K.; Menesy, A.S.; Kotb, K.M.; Saeed Alzahrani, A.; Alhems, L.M. Design and operation of a large-scale solar linear Fresnel system. *Solar Energy*, 2024, 278, 112785.
8. Taušová, M.; Domaracká, L.; Culková, K.; Tauš, P.; Kaňuch, P. Development of energy poverty and its solutions through the use of renewables. *Energies*, 2024, 17, 3762.
9. Wang, C.; Li, W.; Li, Z.; Fang, B. Solar thermal harvesting based on self-doped nanocermet. *Renewable and Sustainable Energy Reviews*, 2020, 134, 110277.
10. Wang, Q.; Yao, Y.; Shen, Z.; Hu, M.; Yang, H. Concentrated solar power tower systems coupled with spectrally selective coatings. *Green Energy Research*, 2023, 1, 100001.
11. Weinstein, L.A.; Loomis, J.; Bhatia, B.; Bierman, D.M.; Wang, E.N.; Chen, G. Concentrating solar power. *Chemical Reviews*, 2015, 115, 12797–12838.
12. Zaki, A.M.; Zayed, M.E.; Alhems, L.M. Predicting energy performance using machine learning and in-situ measurements. *Journal of Building Engineering*, 2024, 95, 110318.
13. Zayed, M.E.; Ghazy, M.; Shboul, B.; Elkadeem, M.R.; Rehman, S.; Irshad, K.; Abido, M.A.; Menesy, A.S.; Askalany, A.A. Enhanced performance of hybrid adsorption desalination integrated with solar systems. *Applied Thermal Engineering*, 2024, 255, 124023.
14. Zayed, M.E.; Kamal, A.; Diab, M.R.; Essa, F.A.; Muskens, O.L.; Fujii, M.; Elsheikh, A.H. Novel design of double slope solar distiller. *Water*, 2023, 15, 610.
15. Zhang, Q.-C.; Mills, D.R. Very low emittance solar selective surfaces using new film structures. *Journal of Applied Physics*, 1992, 72, 3013–3021.
16. Zhang, Q.-C.; Mills, D.R. High solar performance selective surface using bi-sublayer cermet film structures. *Solar Energy Materials and Solar Cells*, 1992, 27, 273–290.