Articles
| Open Access |
https://doi.org/10.55640/
Technological Evolution, Materials Innovation, and Sustainability Integration in Concentrated Solar Power Systems: A Comprehensive Theoretical and Applied Analysis
Dr. Alejandro M. Rivas , Department of Energy Systems Engineering, Universidad de Sevilla, SpainAbstract
Concentrated Solar Power (CSP) has re-emerged as a strategically significant renewable energy technology due to its inherent capability for large-scale dispatchable power generation and high-temperature thermal energy utilization. Unlike photovoltaic systems, CSP integrates optical concentration, thermal conversion, and energy storage, enabling flexible operation aligned with grid demands and industrial heat requirements. This article presents a comprehensive, theory-driven, and literature-grounded analysis of CSP technologies with particular emphasis on power tower systems, solar selective absorber coatings, material durability, and sustainability performance across global value chains. Drawing strictly on the provided references, the study synthesizes advancements in spectrally selective coatings, nanocermet structures, ceramic–metal composites, and high-temperature materials compatibility, while situating these innovations within broader environmental, economic, and social sustainability frameworks. The methodology adopts an integrative qualitative research design based on comparative theoretical interpretation, cross-study synthesis, and descriptive analytical reasoning. Results indicate that performance improvements in CSP are increasingly driven by materials science breakthroughs and system-level optimization rather than optical geometry alone. The discussion critically evaluates aging mechanisms, lifecycle sustainability impacts, and techno-economic trade-offs, highlighting unresolved challenges related to cost reduction, energy poverty mitigation, and large-scale deployment under climate constraints. The article concludes by positioning CSP as a pivotal technology in long-term decarbonization pathways, contingent upon coordinated advances in materials engineering, system integration, and policy support.
Keywords
Concentrated solar power, solar selective coatings, thermal energy storage
References
Alami, A.H.; Olabi, A.G.; Mdallal, A.; Rezk, A.; Radwan, A.; Rahman, S.M.A.; Shah, S.K.; Abdelkareem, M.A. Concentrating solar power technologies: Status and analysis. International Journal of Thermal Sciences, 2023.
Caccia, M.; Tabandeh-Khorshid, M.; Itskos, G.; Strayer, A.R.; Caldwell, A.S.; Pidaparti, S.; Singnisai, S.; Rohskopf, A.D.; Schroeder, A.M.; Jarrahbashi, D.; et al. Ceramic–metal composites for heat exchangers in concentrated solar power plants. Nature, 2018, 562, 406–409.
Gamarra, A.R.; Banacloche, S.; Lechon, Y.; del Río, P. Assessing the sustainability impacts of concentrated solar power deployment in Europe in the context of global value chains. Renewable and Sustainable Energy Reviews, 2023, 171, 113004.
Lee, H.; Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.; Trisos, C.; Romero, J.; Aldunce, P.; Barret, K. Climate Change 2023: Synthesis Report. IPCC, Geneva, 2023.
Niranjan, K.; Krause, M.; Lungwitz, F.; Munnik, F.; Hübner, R.; Pemmasani, S.P.; Galindo, R.E.; Barshilia, H.C. WAlSiN-based solar selective coating stability study under heating and cooling cycles. Solar Energy Materials and Solar Cells, 2023, 255, 112305.
Reoyo-Prats, R.; Carling Plaza, A.; Faugeroux, O.; Claudet, B.; Soum-Glaude, A.; Hildebrandt, C.; Binyamin, Y.; Agüero, A.; Meißner, T. Accelerated aging of absorber coatings for CSP receivers under real high solar flux. Solar Energy Materials and Solar Cells, 2019, 193, 92–100.
Rehman, S.; Zayed, M.E.; Irshad, K.; Menesy, A.S.; Kotb, K.M.; Saeed Alzahrani, A.; Alhems, L.M. Design and operation of a large-scale solar linear Fresnel system. Solar Energy, 2024, 278, 112785.
Taušová, M.; Domaracká, L.; Culková, K.; Tauš, P.; Kaňuch, P. Development of energy poverty and its solutions through the use of renewables. Energies, 2024, 17, 3762.
Wang, C.; Li, W.; Li, Z.; Fang, B. Solar thermal harvesting based on self-doped nanocermet. Renewable and Sustainable Energy Reviews, 2020, 134, 110277.
Wang, Q.; Yao, Y.; Shen, Z.; Hu, M.; Yang, H. Concentrated solar power tower systems coupled with spectrally selective coatings. Green Energy Research, 2023, 1, 100001.
Weinstein, L.A.; Loomis, J.; Bhatia, B.; Bierman, D.M.; Wang, E.N.; Chen, G. Concentrating solar power. Chemical Reviews, 2015, 115, 12797–12838.
Zaki, A.M.; Zayed, M.E.; Alhems, L.M. Predicting energy performance using machine learning and in-situ measurements. Journal of Building Engineering, 2024, 95, 110318.
Zayed, M.E.; Ghazy, M.; Shboul, B.; Elkadeem, M.R.; Rehman, S.; Irshad, K.; Abido, M.A.; Menesy, A.S.; Askalany, A.A. Enhanced performance of hybrid adsorption desalination integrated with solar systems. Applied Thermal Engineering, 2024, 255, 124023.
Zayed, M.E.; Kamal, A.; Diab, M.R.; Essa, F.A.; Muskens, O.L.; Fujii, M.; Elsheikh, A.H. Novel design of double slope solar distiller. Water, 2023, 15, 610.
Zhang, Q.-C.; Mills, D.R. Very low emittance solar selective surfaces using new film structures. Journal of Applied Physics, 1992, 72, 3013–3021.
Zhang, Q.-C.; Mills, D.R. High solar performance selective surface using bi-sublayer cermet film structures. Solar Energy Materials and Solar Cells, 1992, 27, 273–290.
Article Statistics
Downloads
Copyright License
Copyright (c) 2026 Dr. Alejandro M. Rivas

This work is licensed under a Creative Commons Attribution 4.0 International License.