

Research Article

Integrating Autonomous and Robotic Systems for Safety-Critical Mining Operations: A Human-Centered, Systems Engineering Perspective on Underground and Surface Automation

Dr. Mateo L. Carranzard¹

¹School of Mechanical and Mining Engineering, The University of Queensland, Australia

Received: 12 December 2025
Revised: 02 January 2026
Accepted: 20 January 2026
Published: 11 February 2026

Copyright: © 2026 Authors retain the copyright of their manuscripts, and all Open Access articles are disseminated under the terms of the Creative Commons Attribution License 4.0 (CC-BY), which licenses unrestricted use, distribution, and reproduction in any medium, provided that the original work is appropriately cited.

Abstract

The mining industry has entered a decisive period of technological transformation driven by the convergence of automation, robotics, sensing, and artificial intelligence. Across both surface and underground operations, autonomous and semi-autonomous systems are increasingly deployed to address long-standing challenges related to worker safety, operational efficiency, productivity variability, and environmental constraints. Despite significant technical progress, the implementation of automation in mining remains uneven, constrained not only by engineering limitations but also by systemic safety risks, human-machine interaction challenges, and the complexity of integrating autonomous systems into legacy mining environments. This research article presents a comprehensive, theory-driven examination of autonomous and robotic systems in mining, synthesizing contemporary developments in unmanned aerial vehicles, unmanned ground vehicles, longwall automation, computer-vision-based collision avoidance, and sensing technologies within a unified systems engineering and human-systems integration framework.

Methodologically, the study adopts a structured qualitative synthesis approach grounded in systems engineering principles, functional safety doctrine, and human-systems integration theory. Findings reveal that productivity gains and safety improvements are most pronounced when automation is embedded within a coherent safety lifecycle that incorporates functional safety standards, human-centered design, and continuous risk assessment. Conversely, failures in mining automation frequently stem from inadequate integration of sensing, control, and human oversight rather than from deficiencies in autonomy algorithms alone.

The discussion critically interrogates prevailing assumptions surrounding full autonomy, highlighting limitations related to trust calibration, situational awareness degradation, and regulatory ambiguity. The article concludes by proposing future research and implementation pathways that emphasize adaptive autonomy, resilient sensing architectures, and the formal integration of human-systems integration into mining automation governance. By reframing automation as a socio-technical safety system rather than a discrete technological artifact, this research contributes a foundational perspective for safer, more sustainable mining operations in the coming decades.

Keywords: Mining automation, autonomous systems, underground mining safety, human-systems integration, functional safety, robotics in mining

Mining has historically been characterized by its exposure to extreme environmental conditions, hazardous materials, and complex operational dynamics that place workers at persistent risk. From underground coal seams to large-scale open-pit operations, mining environments are shaped by confined spaces, unstable geological formations, limited visibility, airborne particulates, noise, vibration, and the presence of heavy machinery. These conditions have long motivated technological interventions aimed at reducing human exposure to danger while maintaining economic viability. In recent decades, the acceleration of automation and robotics has fundamentally altered the technological landscape of mining, offering unprecedented opportunities to enhance safety and productivity simultaneously (Ralston et al., 2015; Long et al., 2024).

The contemporary push toward autonomous mining systems is driven by multiple intersecting pressures. Declining ore grades, deeper underground operations, labor shortages, and heightened safety expectations have collectively rendered traditional manual approaches increasingly unsustainable. Automation promises not only to reduce accident rates but also to stabilize production, optimize equipment utilization, and enable continuous operation under conditions that would otherwise necessitate shutdowns or evacuation (Ralston et al., 2014). However, the introduction of autonomous and semi-autonomous systems has also introduced new categories of risk, particularly in relation to system reliability, human-machine interaction, and functional safety compliance.

Underground mining presents a uniquely challenging context for automation. Unlike structured industrial environments, underground mines are dynamic, partially unknown, and continuously evolving as excavation progresses. The absence of global navigation satellite systems, the variability of lighting conditions, and the prevalence of dust and moisture complicate sensing and perception for autonomous platforms (Li et al., 2020). Additionally, the coexistence of human workers and autonomous machines in confined spaces necessitates robust collision avoidance, situational awareness, and fail-safe mechanisms to prevent catastrophic incidents (Imam et al., 2023).

Robotic and autonomous technologies in mining have evolved along multiple trajectories. Longwall automation represents one of the earliest and most mature examples, enabling remote operation of shearers and roof supports to reduce worker exposure at the coal face (Ralston et al., 2015). More recently, unmanned ground vehicles and mobile robots have been developed for inspection, haulage, and exploration tasks, while unmanned aerial vehicles have emerged as valuable tools for mapping, ventilation assessment, and emergency response in both surface and underground contexts (Shrivastava, 2024; Li et al., 2020). Computer-vision-based anti-collision systems have further expanded the safety envelope by enabling real-time detection of obstacles, personnel, and other equipment (Imam et al., 2023).

Despite these advances, the literature consistently emphasizes that technological capability alone is insufficient to guarantee safety outcomes. Failures in mining automation often arise from inadequate integration of human operators into control loops, insufficient training, poor interface design, and misalignment between operational practices and safety standards (Burgess-Limerick, 2020). Human-systems integration theory underscores that safety is an emergent property of the entire socio-technical system, encompassing hardware, software, humans, procedures, and organizational culture (Booher, 2003; Folds, 2015).

This article addresses a critical gap in the mining automation literature by synthesizing technological developments within a unified systems engineering and functional safety framework. While numerous studies have examined specific technologies or platforms, fewer have attempted to integrate these findings into a comprehensive theoretical model that accounts for human, organizational, and regulatory dimensions. By drawing exclusively on established academic and standards-based sources, this research aims to articulate a coherent narrative that connects autonomous technologies to safety performance, system resilience, and long-term sustainability.

The central problem addressed in this study is the persistent mismatch between the

technical potential of mining automation and its realized safety benefits. While autonomous systems are often promoted as inherently safer than manual operations, empirical evidence suggests that safety improvements are contingent on careful system design, rigorous hazard analysis, and ongoing human oversight. This article therefore seeks to answer the following research questions: How do autonomous and robotic systems contribute to safety and productivity in mining when viewed as integrated socio-technical systems? What are the dominant technological and human-centered factors that enable or constrain safe automation in underground and surface mining? And how can systems engineering and functional safety principles be operationalized to guide future developments?

METHODOLOGY

The methodological approach adopted in this research is grounded in qualitative synthesis and theoretical integration rather than empirical experimentation or quantitative modeling. This choice reflects the objective of producing a comprehensive, publication-ready conceptual analysis that draws together disparate strands of mining automation research into a coherent framework. The methodology is informed by systems engineering principles, functional safety doctrine, and human-systems integration theory, all of which emphasize holistic analysis over isolated component optimization (INCOSE, 2021; Booher, 2003).

The primary source material for this study consists of peer-reviewed journal articles, conference proceedings, industry guidelines, and international standards explicitly provided in the reference list. These sources span technological domains including unmanned aerial vehicles, autonomous ground vehicles, longwall automation, sensing technologies, computer vision, and robotics, as well as cross-cutting disciplines such as functional safety engineering and human-systems integration. By restricting the analysis strictly to these references, the study ensures traceability and avoids speculative claims unsupported by established literature.

The synthesis process involved several stages. First, each reference was examined in detail to identify its core contributions, assumptions, and limitations. Particular attention was paid to how safety was conceptualized, whether implicitly or explicitly, and how human operators were positioned within automated systems. Second, thematic categories were developed to organize the literature, including autonomy levels, sensing and perception, collision avoidance, human-machine interaction, and regulatory frameworks. These categories served as analytical lenses through which the literature was interpreted.

Third, systems engineering principles were applied to examine interactions between technological components, human roles, and organizational processes. This involved mapping how autonomous systems interface with sensing, control, communication, and decision-making layers, as well as how these interfaces influence safety outcomes. Functional safety standards and guidelines, such as ISO 13849-1 and ISO 17757, were used as normative benchmarks to assess whether described technologies align with established safety lifecycles and risk reduction strategies (International Organization for Standardization, 2015; International Organization for Standardization, 2019).

Finally, human-systems integration theory was employed to critically analyze the allocation of functions between humans and machines. This analysis considered issues such as operator workload, trust calibration, situational awareness, and training requirements, drawing on foundational texts in human-systems integration and safety engineering (Burgess-Limerick, 2020; Folds, 2015). The result is an integrative narrative that moves beyond descriptive review toward a theoretically grounded interpretation of mining automation as a safety-critical socio-technical system.

RESULTS

The synthesis of the literature reveals several interrelated findings regarding the role of autonomous and robotic systems in mining safety and productivity. One of the most consistent observations is that automation yields its greatest benefits when deployed in

tasks characterized by high hazard exposure, repetitive operations, and limited variability. Longwall mining exemplifies this dynamic, as automation has enabled the remote operation of shearers and roof supports, significantly reducing the time workers spend at the coal face while improving production consistency (Ralston et al., 2015).

In underground environments, unmanned aerial vehicles have emerged as a transformative technology for exploration, mapping, and inspection. UAVs equipped with onboard sensing and simultaneous localization and mapping capabilities can navigate complex tunnel networks, generating detailed spatial models without exposing personnel to unstable or hazardous areas (Li et al., 2020). Shrivastava (2024) further demonstrates that UAVs contribute to productivity by enabling rapid data acquisition, improved planning, and proactive hazard identification, particularly in post-blast and emergency scenarios.

Autonomous ground vehicles and robotic platforms similarly contribute to safety by assuming tasks such as haulage, drilling, and inspection in environments where human presence is undesirable or impractical. Advances in path planning and navigation have improved the ability of these systems to operate in constrained underground spaces, although challenges remain in dealing with dynamic obstacles and uncertain terrain (Abdukodirov&Benndorf, 2025). Importantly, these technologies do not eliminate the need for human involvement but rather shift human roles toward supervision, intervention, and system management.

A critical finding across multiple studies is the centrality of sensing and perception to safe automation. Underground mines present severe challenges for sensors due to dust, darkness, and electromagnetic interference, necessitating robust, multi-modal sensing architectures (Ralston et al., 2014). Computer-vision-based anti-collision systems represent a significant advance, enabling real-time detection of personnel and equipment to prevent accidents in mixed-traffic environments (Imam et al., 2023). However, the reliability of such systems is highly dependent on lighting conditions, sensor placement, and algorithm robustness.

The literature also highlights that safety outcomes are strongly influenced by the degree to which automation is integrated into a formal functional safety framework. Standards such as ISO 17757 emphasize the need for systematic hazard identification, risk assessment, and verification throughout the system lifecycle (International Organization for Standardization, 2019). Studies indicate that organizations that treat automation as a safety-critical system rather than a productivity tool are more likely to realize sustained safety improvements (Global Mining Guidelines Group, 2020).

Finally, human-systems integration emerges as a decisive factor in determining the success or failure of mining automation initiatives. Burgess-Limerick (2020) demonstrates that poorly designed interfaces, inadequate training, and unclear responsibility allocation can negate the safety benefits of automation. Conversely, systems that support operator situational awareness, provide transparent system feedback, and facilitate appropriate levels of human control are more resilient and adaptable to unexpected conditions.

DISCUSSION

The findings underscore the necessity of reframing mining automation as a socio-technical system in which safety is an emergent property rather than a byproduct of technological sophistication. While autonomous and robotic systems undeniably reduce direct human exposure to hazards, they also introduce new failure modes associated with software errors, sensor degradation, and human-machine miscommunication. This duality challenges simplistic narratives that equate automation with inherent safety.

One of the most significant theoretical implications of this analysis is the need to reconsider the concept of full autonomy in mining. Although technological advances continue to push toward higher levels of autonomy, the literature suggests that human oversight remains indispensable, particularly in unstructured underground environments (Green et al., 2010). Rather than striving for complete human removal, a

more pragmatic approach emphasizes adaptive autonomy, in which control authority dynamically shifts between human operators and machines based on context and risk.

Functional safety standards provide a critical foundation for this approach by formalizing safety requirements and risk reduction strategies. However, compliance alone is insufficient if standards are treated as static checklists rather than living frameworks that evolve alongside operational practices. Integrating functional safety with human-systems integration can help bridge this gap by ensuring that safety mechanisms are not only technically sound but also usable and comprehensible to operators (Booher, 2003).

Limitations identified in the literature include the lack of longitudinal studies examining the long-term safety impacts of automation and the relative scarcity of empirical data from fully autonomous underground operations. Many reported benefits are derived from pilot projects or controlled deployments, raising questions about scalability and generalizability. Additionally, regulatory frameworks in many jurisdictions have not kept pace with technological innovation, creating uncertainty regarding liability, certification, and accountability.

Future research should therefore focus on developing standardized metrics for evaluating safety performance in automated mining systems, as well as methodologies for assessing human trust, workload, and situational awareness in mixed-autonomy environments. Advances in sensing, particularly in robust perception under adverse conditions, remain a priority, as does the integration of redundant safety layers to enhance system resilience.

CONCLUSION

Automation and robotics have fundamentally reshaped the safety and productivity landscape of modern mining. When viewed through a systems engineering and human-centered lens, autonomous technologies offer powerful tools for reducing risk, improving operational consistency, and enabling access to previously inaccessible environments. However, these benefits are neither automatic nor guaranteed. Safety emerges from the careful integration of technology, human expertise, organizational processes, and regulatory oversight.

This research has demonstrated that successful mining automation depends not only on advances in autonomy algorithms or hardware but also on rigorous functional safety practices and thoughtful human-systems integration. By conceptualizing automation as a safety-critical socio-technical system, mining organizations can better anticipate and manage the complex interactions that shape real-world performance.

As mining operations continue to evolve toward deeper, more challenging environments, the principles articulated in this study provide a foundation for responsible and resilient automation. Ultimately, the future of safe mining lies not in the elimination of humans from the system, but in the intelligent design of systems that leverage the complementary strengths of humans and machines.

REFERENCES

1. Abdukodirov, A., & Benndorf, J. (2025). Recent developments in path planning for unmanned ground vehicles in underground mining environment. *Mining*, 5(2), 33.
2. Booher, H. (2003). *Handbook of human systems integration*. Wiley.
3. Burgess-Limerick, R. (2020). Human-systems integration for the safe implementation of automation. *Mining, Metallurgy & Exploration*, 37, 1799–1806.
4. Folds, D. J. (2015). Systems engineering perspective on human systems integration. In D. A. Boehm-Davis, F. T. Durso, & J. D. Lee (Eds.), *APA handbook of human systems integration* (pp. 21–35). American Psychological Association.
5. Global Mining Guidelines Group. (2020). Guideline for applying functional safety to autonomous systems in mining.
6. Green, J. J., Bosscha, P. A., Candy, L., Hlophe, K., Coetzee, S., & Brink, S. (2010). Can a robot improve mine safety?

7. Imam, M., Baïna, K., Tabii, Y., Ressami, E. M., Adlaoui, Y., Benzakour, I., & Abdelwahed, E. H. (2023). The future of mine safety: A comprehensive review of anti-collision systems based on computer vision in underground mines. *Sensors*, 23(9), 4294.
8. INCOSE. (2021). System safety mission & objectives.
9. International Electrotechnical Commission. (2013). Functional safety. *Electropedia*.
10. International Organization for Standardization. (2015). Safety of machinery – Safety-related parts of control systems – Part 1: General principles for design (ISO 13849-1:2015).
11. International Organization for Standardization. (2019). Earth-moving machinery and mining — Autonomous and semi-autonomous machine system safety (ISO 17757:2019).
12. Li, H., Savkin, A. V., & Vucetic, B. (2020). Autonomous area exploration and mapping in underground mine environments by unmanned aerial vehicles. *Robotica*, 38(3), 442–456.
13. Long, M., Schafrik, S., Kolapo, P., Agioutantis, Z., & Sottile, J. (2024). Equipment and operations automation in mining: A review. *Machines*, 12(10), 713.
14. Pastore, T., & Djapic, V. (2010). Improving autonomy and control of autonomous surface vehicles in port protection and mine countermeasure scenarios. *Journal of Field Robotics*, 27(6), 903–914.
15. Ralston, J. C., Reid, D. C., Dunn, M. T., & Hainsworth, D. W. (2015). Longwall automation: Delivering enabling technology to achieve safer and more productive underground mining. *International Journal of Mining Science and Technology*, 25(6), 865–876.
16. Ralston, J., Reid, D., Hargrave, C., & Hainsworth, D. (2014). Sensing for advancing mining automation capability: A review of underground automation technology development. *International Journal of Mining Science and Technology*, 24(3), 305–310.
17. Shrivastava, A. (2024). Unmanned aerial vehicles (UAV) in mining sector: Enhancing productivity and safety. *Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering*.