AMERICAN ACADEMIC PUBLISHER INTERNATIONAL JOURNAL OF MEDICAL SCIENCES

УРОВЕНЬ ЭКСПРЕССИИ ИММУНОГИСТОХИМИЧЕСКИХ МАРКЕРОВ СО-45 И КІ-67 В ТКАНИ СЕРДЦА ПРИ ЭКСПЕРИМЕНТАЛЬНОМ ПНЕВМОСКЛЕРОЗЕ ПОСЛЕ КОРРЕКЦИИ МАСЛОМ КОСТОЧЕК ГРАНАТА

Ражабов Н.Г., Тешаев Ш.Ж., Рахматова М.Р..

Бухарский государственный медицинский институт имени Абу Али ибн Сино, Узбекистан.

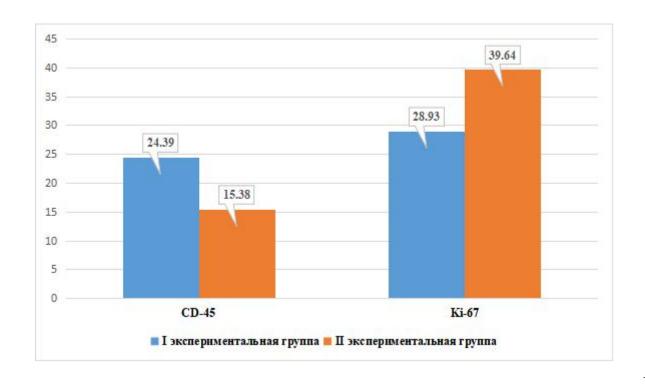
Резюме: Болезни сердечно-сосудистой системы считаются ведущей в мире по распространенности группой заболеваний широкого спектра, к которым относятся патологии, влияющие на качество жизни человека, в частности, от синусовых аритмий до острых инфарктов миокарда. Несмотря на достигнутые в последние годы успехи в изучении патоморфологии, клинического течения, диагностике заболеваний этой системы, сохраняется ряд нерешенных проблем с точки зрения выбора методов лечения и их эффективности.

Ключевые слова: экспериментальном пневмосклероз, ткани сердца, иммуногистохимические маркеры коррекция, масло косточек граната.

Актуальность работы. Во всем мире проводится ряд научных исследований, направленных на улучшение методов оценки особенностей развития и ранней диагностики осложнений пандемии COVID-19 с целью их смягчения у пациентов с сердечно-сосудистыми заболеваниями. Учитывая что, фиброз легких, наблюдаемый после инфекции SARS-CoV-2 развивается из-за реэпителизации клеток, активации фибробластов, избыточного депонирования коллагеновых волокон, нужно принять во внимание раскрытые механизма процессов, наблюдаемых в ткани сердца при данной патологии, выявление слабых звеньев при поражении элементов сердечной структуры, спрогнозирование развития, течения, осложнения заболевания с учетом их долгосрочных последствий возникает необходимость разработки практических рекомендаций по оптимизации актуальности выбранного направления и существующих современных подходов. Поэтому особое значение приобретают научные исследования, направленные на построение патогенетического алгоритма морфофункциональных нарушений сердца и всего организма, улучшение прогноза заболеваний и качества жизни больных.

Цель исследования: оценить уровень экспрессии иммуногистохимических маркеров CD-45 и KI-67 в ткани сердца при экспериментальном пневмосклерозе и после коррекции маслом косточек граната.

Материалы и методы исследования: Для эксперимента было отобрано 3-месячных белых крыс обоего пола. Крысы были разделены на 3 основные группы (n=225): - контрольная группа (n=75); - І опытная группа - крысы с пневмосклерозом, не получавшие никакого препарата (n=75); - ІІ опытная группа - крысы с диффузным пневмосклерозом, получавшие масло косточек граната (n=75). Предметом исследования служили общий макропрепарат сердца, полученный от белых беспородных крыс под экспериментом, и гистологический материал из различных частей сердечной ткани. После окончания эксперимента у умерщвленных крыс


INTERNATIONAL JOURNAL OF MEDICAL SCIENCES

извлекали сердце и для иммуногистохимических исследований проводились срезы толщиной 3 мкм депарафинизировали, обезвоживали, окрашивали с специальными антителами с использованием автоматизированной системы Ventana Benchmark XT

(Roche, Швейцария).

Результаты и обсуждения. В ходе исследования иммуногистохимическим методом оценивали уровень экспрессии маркеров Ki-67 и CD-45 в стенке правого желудочка 9-месячных белых крыс I и II экспериментальных групп. Основной причиной выбора этой камеры были процессы, происходящие в правой половине сердца на основании имеющихся морфологических изменений. Маркер Ki-67 показывал пролиферацию клеток, а CD-45 указывал на наличие клеток лейкоцитарного антигена. Наблюдался уровень экспрессии маркера CD-45 24,39% и 15,38%. Эти показатели соответствовали уровню 2+ (20-60% клеток) и 1+ (<20% клеток), то есть уровень лейкоцитарного антигена клеток в ткани сердца снижался под влиянием масла косточек граната. Уровень экспрессии маркера Ki-67 составил 28,93% и 39,64%. Эти показатели соответствовали уровню 2+ (20-60% клеток), то есть свидетельствовали о том, что пролиферация клеток наблюдалась в ткани сердца на среднем уровне (рис. 1).

В ходе исследования измеряли и анализировали диаметр кардиомиоцитов сердца белых крыс контрольной и опытных групп. Естественно, оказалось, что диаметр кардиомиоцитов в четырех камерах сердца различен. Они относительно крупнее в желудочках и меньше в предсердиях. Измерения со всех камер были рассчитаны и усреднены. В частности, диаметр кардиомиоцитов увеличился на 1,1 мкм у 6-месячных крыс контрольной группы, на 3,2 мкм у 9-месячных и на 1,6 мкм у 12-месячных крыс. Определено, что темпы роста увеличились на 15,1%, 38,1% и 13,8% соответственно. Наибольший темп роста была определен в 9 месяцев, а наименьший темп роста зафиксирован в 12 месяцев.

AMERICAN ACADEMIC PUBLISHER INTERNATIONAL JOURNAL OF MEDICAL SCIENCES

Рис. 1. Уровень экспрессии маркеров (%) Ki-67 и CD-45 в ткани сердца 9месячных белых беспородных крыс

У крыс с пневмосклерозом диаметр кардиомиоцитов увеличивался в постнатальном онтогенезе. В 6 мес этот показатель увеличился на 1,5 мкм, в 9 мес - на 4,3 мкм, в 12 мес - на 1,7 мкм. Самый высокий темп роста наблюдался в 9 месяцев (48,8%), самый низкий темп роста наблюдался в 12 месяцев (12,9%). Во II опытной группе диаметр кардиомиоцитов увеличивался до 12 месяцев (последний срок, зафиксированный в исследовании). В частности, темп роста в 12-месячном периоде составил 1,1 мкм и 8,8%. Так, в контрольной группе с 3 до 12 месяцев диаметр кардиомиоцитов увеличился на 5,9 мкм и 80,8%, в I опытной группе за этот же период отмечено увеличение на 7,5 мкм и 102,7%, в группе с пневмосклерозом с коррекцией маслом косточек граната, наблюдалось увеличение на 6,3 мкм и темп роста составил 86,3% (рис. 2). Увеличение размеров кардиомиоцитов, наблюдаемое в опытных группах, было отмечено как ответ на имеющуюся гипоксию (преимущественно за счет правых отделов сердца). Масло косточек граната повышает устойчивость организма к гипоксии и замедляет этот процесс.

Длина кардиомиоцитов также периодически увеличивалась. В контрольной группе в контрольной группе отмечено увеличение на 6,9 мкм в 6 месяцев, 12,7 мкм в 9 месяцев и 7,3 мкм в 12-месячном возрасте. Самый высокий темп роста составил 17,7% в 9 месяцев, а самый низкий — 8,6% в 12 месяцев. В І опытной группе длина увеличилась на 10,6 мкм в 6 мес, на 17 мкм в 9 мес. и 7,4 мкм в 12 мес. Темп роста составил 16,4%, 22,6% и 8,0% соответственно. В лечебной группе диаметр кардиомиоцитов у 12-месячных белых беспородных крыс увеличился на 5,2 мкм (5,8%) по сравнению с 9-месячными крысами. Так, в 9 месяцев длина кардиомиоцитов увеличилась в І и ІІ опытных группах в 1,09 (9,5%) и 1,05 (5,1%) раза по сравнению с контрольной группой. В 12-месячном периоде этот показатель увеличился в 1,09 (8.8%) и 1.02 (2.4%) раза соответственно. Такое состояние свидетельствует о том, что к 9-месячному возрасту компенсаторный характер организма усиливается, а затем процесс замедляется, что свидетельствует о подготовке организма к стадии субкомпенсации. А при коррекции маслом косточек граната за счет нейтрализации свободных радикалов, образующихся при гипоксии, показатели приближаются к контрольной группе, что отражается на морфометрических показателях.

INTERNATIONAL JOURNAL OF MEDICAL SCIENCES

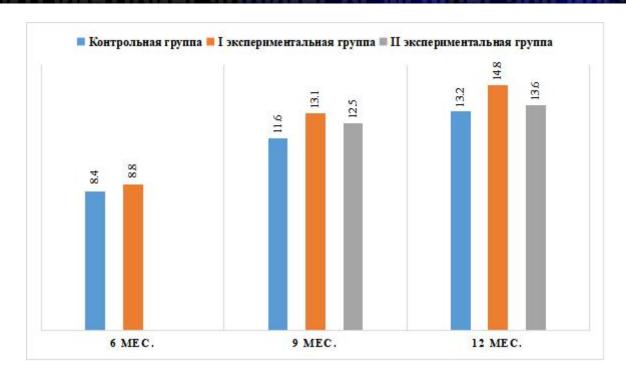


Рис. 2. Динамика изменения диаметра кардиомиоцитов сердца (мкм) белых беспородных крыс

Увеличение размеров кардиомиоцитов отмечалось также на размерах площадях кардиомоцитов и их цитоплазмы и ядер. Установлено, что общая площадь кардиомиоцитов увеличилась на 85,9% в период от 3 до 12 месяцев у белых крыс контрольной группы, на 102,2% у крыс с пневмосклерозом и на 89,7% в группе с коррекцией маслом косточек граната. В І опытной группе площадь цитоплазмы увеличилась на 8,1% у 9-месячных крыс и на 7,4% у 12-месячных крыс. В ІІ экспериментальной группе обнаружено увеличение на 6,3% в 9-месячный период и на 1% в 12-месячном периоде. Определено, что показатели в корригированной группе были на 1,6% и 6,1% ниже по соответствию возрастным периодам чем в І экспериментальной группе. Размеры ядра кардиомиоцитов также увеличивались по общей закономерности, т. е. с увеличением возраста, и это соответствовало показателям, приведенным в литературах. В частности, в период от 3 до 12 месяцев этот показатель увеличился на 71,2% в контрольной группе, на 83,2% в группе с пневмосклерозом и на 79,3% в группе лечения. За 12-месячный период эта площадь была на 7,0% больше в I опытной группе по сравнению с контрольной группой и на 2,1% больше по сравнению со ІІ опытной группой (рис. 3).

AMERICAN ACADEMIC PUBLISHER INTERNATIONAL JOURNAL OF MEDICAL SCIENCES

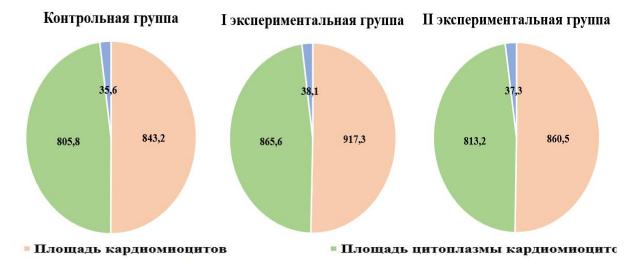
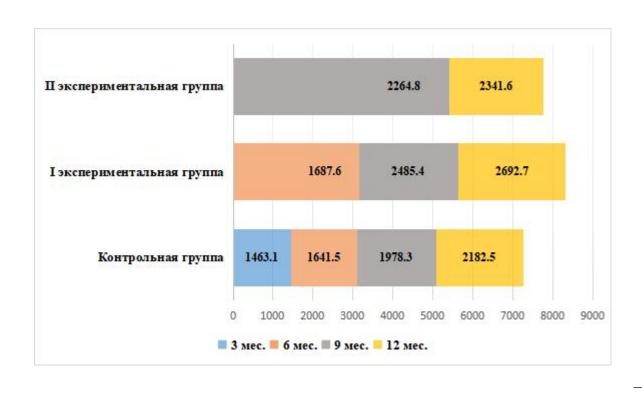



Рис. 3. Изменения общей, цитоплазматической и ядерных площадей кардиомиоцитов (мкм²) у 12-месячных белых беспородных крыс

Площадь ядер кардиомиоцитов

С целью изучения стромы белых беспородных крыс во всех группах также рассчитывали поверхность соединительнотканного барьера. В этом случае он укладывается слоями, а волокна слабо связаны друг с другом. Замечено, что этот показатель увеличился на 719,4 мкм² в контрольной группе, на 1229,6 мкм² у крыс с пневмосклерозом и на 878,5 мкм² в группе с коррекцией. В 12 месяцев площадь соединительнотканной прослойки была на 7,3% больше во ІІ опытной группе по сравнению с контрольной группой и на 13% меньше по сравнению с І опытной группой (рис. 4).

INTERNATIONAL JOURNAL OF MEDICAL SCIENCE

Рис. 4. Динамика изменений соединительнотканной прослойки сердца белых беспородных крыс в постнатальном онтогенезе (мкм²)

Соотношение стромы и кардиомиоцитов находили путем умножения площади сосудистой полости и площади прослойки соединительной ткани и деления результата на площадь кардиомиоцитов. Это позволило оценить развитие фиброзной ткани в ткани сердца. Полученные результаты показали, что этот показатель в обеих экспериментальных группах был выше, чем в контрольной группе. В частности, в 6-месячном периоде в I опытной группе этот показатель снизился на 2% по сравнению с контрольной группой, в 9 месяцев - выше на 8,4%, а в 12 месяцев - на 6,3%. У крыс с коррекцией это соотношение было на 4,6% выше в 9 мес и на 2,6% в 12 мес, чем в контрольной группе.

При пневмосклерозе первоначальное снижение этого показателя может быть связано с хроническим отравлением?! Увеличение этого показателя наблюдалось у крыс II опытной группы в более старшем возрасте, при этом считали, что площадь прослойки соединительной ткани увеличивается из-за застоя в кровеносных сосудах и кислородной недостаточности. За счет компенсаторной реакции кардиомиоциты увеличиваются в размерах, но строма занимает сравнительно большую площадь. После коррекции маслом косточек граната патологическое состояние изменилось в положительную сторону. Утолщение прослойки, увеличение их площади замедлилось, и соотношение приблизилось к показателям контрольной группы.

Выводы. Таким образом, установлено, что применение масла косточек граната в течение 3 месяцев на фоне хронического пневмосклероза оказывает положительное влияние на морфологию сердца. Отмечено, что анализируемые морфологические показатели были близки к контрольной группе. Отмечено, что можно существенно снизить негативное влияние фиброза легких на структурные структуры сердца. Полученные результаты были подтверждены иммуногистохимическим исследованием.

Литература:

- 1. Раджабов Н.Г., Тешаев Ш.Ж. Тажрибавий шароитда ўпкада фиброз чақирилган лаборатор ҳайвонларнинг юрагидаги морфологик ўзгаришлар // Тиббиётда янги кун. Тошкент, 2022. № 12 (50). Б. 261-265. (14.00.02; №22)
- 2. Раджабов Н.Г., Тешаев Ш.Ж. Морфологические изменения сердца при экспериментальном пневмосклерозе // Новый день в медицине. Ташкент, 2022. № 12 (50). С. 627-631. (14.00.02; №22)
- 3. Rajabov N.G., Teshaev Sh.J. Morphology and morphometric characteristics of the heart on the background of pneumosclerosis of the pulmonary after medication correction // British Medical Journal. 2023. Volume-3, № 3. P. 57-75 (14.00.02; №3).
- 4. Rajabov N.G., Teshaev Sh.J., Sanoev B.A. Morphology and morphometric characteristics of the heart on the background of chronic pneumosclerosis // Art of Medicine. 2023. Volume 3. P. 7-21.

INTERNATIONAL JOURNAL OF MEDICAL SCIENCES

- 5. Rajabov N.G. Characteristics of the heart against the background of pneumosclerosis of the lungs after drug correction // International Journal of Health Systems and Medical Sciences. 2023. Volume 2, № 6. P. 17-30.
- 6. Раджабов Н.Г. Морфологические изменения при экспериментальном пневмосклерозе / Сборник тезисов І Республ. научно-практ. конф. «Актуальные вопросы фармакологии: от разработки лекарств до их рационального применения». Бухара. 28-29 мая 2020 года. С. 165.
- 7. Раджабов Н.Г. Экспериментал пневмосклерозда юракдаги морфологик ўзгаришлар ва уни анор донаги мойи билан коррекциялаш / Сборник тезисов III Республ. научнопракт. конф. «Актуальные вопросы фармакологии: от разработки лекарств до их рационального применения». Бухара. 19-20 мая 2022 года.
- 8. Жумаева Г.А. , Рахматова М.Р., Жалолова В.З. , Нурова З.Х.. Достигнутые успехи в изучении патогенеза и диагностики гипертонической болезни // Тиббиётда янги кун -2020. №1- С. 30-34.
- 9. Жумаева Г.А. , Рахматова М.Р., Жалолова В.З., «Бисопролол и физиотенз при артериальной гипертензии» /монография LAP LAMBERT academic publishing RU 2020
- 10. Жумаева Г.А. , Рахматова М.Р., Жалолова В.З., Характер влияния физиотенза и конкора на функциональное состояние эндотелия и тромбоцитарное звено системы гемостаза у больных артериальной гипертензией // Биология и интегративная медицина. 2019. №10 (38). С. 13-56.
- 11. Хамидова З.Н., Рахматова М.Р., Шаджанова Н.С. Частота распространения гипертензивной нефропатии и особенности её течения у женщин фертильного возраста с артериальной гипертензией // Вестник СМУС74. 2016. №4 (15)- С. 55-58.