AMERICAN ACADEMIC PUBLISHER INTERNATIONAL JOURNAL OF MEDICAL SCIENCES

GENERAL PRINCIPLES OF ORGAN AND TISSUE TRANSPLANTATION: THE CONCEPT OF TRANSPLANTOLOGY AND PROSTHETICS

Mamanov Baxtishod Sirojiddin ugli, Egamurodov Shohjahon Olim ugli, Hasanov Muhammad Yusuf ugli, Obidov Og'abek Toxir ugli,

Students of Tashkent State Dental Institute Gadayev Asliddin Mamarasulovich

Scientific Supervisor of the Department of Anatomy

Annotation: This article discusses the general principles of organ and tissue transplantation, focusing on the concepts of transplantology and prosthetics. Organ and tissue transplantation represents one of the most advanced and life-saving branches of modern medicine. The paper analyzes the fundamental principles of transplantology, including ethical, clinical, and technological aspects. Special attention is given to donor selection, immunological compatibility, and the long-term viability of the transplanted organ. The article also highlights global disparities in access to transplantation services and emphasizes the necessity of establishing a safe and equitable donor system worldwide.

Keywords: Donor, transplantation, WHO, 3D bioprinting, tissue, biomimicry, prosthetics, organ failure.

Introduction: Tissue or organ donation is a complex, multidisciplinary process that begins with a well-defined procedure for determining death. Following this, donors are selected based on strict criteria that determine whether or not organ retrieval is permissible. As a result, this process involves highly specialized medical teams who perform organ retrieval and transplantation. This article sheds light on

the role of the medical team in evaluating and managing the donation process, as well as in post-transplant patient care.

Objectives:

- To promote organ donation and support efforts to improve outcomes.
- To discuss strategies for enhancing coordination and communication among medical teams.
- To summarize the barriers in tissue and organ donation.
- To examine the role of healthcare professionals in the donation process.

Tissues and organs can be donated by either living or deceased donors. Living donors typically donate organs such as a kidney, a portion of the liver, or a lobe of the lung. According to the U.S. Institute of Medicine – National Academy of Sciences, physicians may determine death based on neurological (brain death) or circulatory-respiratory criteria. Once death has been confirmed, certain organs may be retrieved from the donor's body and transplanted into a recipient in need.

AMERICAN ACADEMIC PUBLISHER INTERNATIONAL JOURNAL OF MEDICAL SCIENCES

Unfortunately, thousands of patients around the world suffer or lose their lives each day due to the lack of available organs and tissues for transplantation. Healthcare professionals are often placed in emotionally challenging situations where they must encourage families to consider donation at the time of a loved one's death — a decision that has the potential to save another person's life.

In the organ donation process, care is multifaceted. Following the determination of death by neurological or circulatory criteria, donor management begins with the optimization of the donor's physiological condition. This includes hemodynamic and ventilatory support to preserve heart and lung function. It is essential to retrieve organs and tissues promptly, as inflammatory mediators begin to infiltrate solid organs shortly after death, increasing their immunogenicity and potentially reducing transplant success. Therefore, every step from retrieval to placement must be performed swiftly and efficiently to ensure the best outcomes.

The Role of Healthcare Providers and Teams: Some healthcare professionals may decline to participate in tissue or organ donation or transplantation due to personal, cultural, ethical, or religious beliefs. While it is important to respect individual belief systems, these personal convictions should not interfere with a patient's right to make autonomous decisions regarding their own care. The primary obligation of medical staff is toward the patient and their family. However, some healthcare workers may choose not to participate in the donation process or in institutional or community awareness campaigns. This decision should be respected as a matter of personal choice.

For those willing to support the cause, roles can range from offering guidance to patients considering donation during end-of-life planning, to participating in education and outreach.

Key concerns for organ and tissue procurement teams include obtaining consent, retrieving organs and tissues promptly, and ensuring their rapid transport. Common challenges may arise due to the inability to identify suitable donors, delayed declaration of death, or the absence of a matching recipient at the time of availability.

Organ and tissue placement teams are primarily concerned with the compatibility of the tissue or organ, maintaining viability during transport and handling, and ensuring timely transplantation into the recipient.

The first human **colon transplantation** was performed in 1964 in Boston by Deterling. In the territory of the Russian Federation, the **first small intestine transplantation** was successfully conducted on May 25, 2006, at the "Russian Scientific Center of Surgery named after Academician B. V. Petrovsky." According to statistical data, nearly 3,000 small intestine transplantations have been carried out worldwide. In high-level specialized transplant centers, the one-year survival rate of patients exceeds 90%. The five-year survival rate of recipients, including those who underwent **multivisceral transplantation**, reaches up to 56%.

The primary indication for small intestine transplantation worldwide is short bowel syndrome (SBS). The major causes of SBS include intestinal atresia, necrotizing enterocolitis, mesenteric thrombosis, intestinal volvulus, and the consequences of extensive resections due to massive intussusception.

AMERICAN ACADEMIC PUBLISHER INTERNATIONAL JOURNAL OF MEDICAL SCIENCES

Prosthetics refers to the application of artificial devices to restore the function or structure of natural organs. Examples include heart valves, artificial knee joints, hearing aids, and even bioelectronic hearts. Prosthetics are often used in cases where transplantation is not feasible and are essential for restoring a patient's mobility and improving their quality of life.

In both **transplantology and prosthetics**, adherence to ethical and legal standards is crucial. These include obtaining donor consent, combating organ trafficking, ensuring equitable access, and maintaining a transparent waiting list system. The **World Health Organization** (WHO) and other international bodies are actively working to establish global standards in these areas.

Modern Achievements and Future Prospects. Recent advancements in 3D bioprinting, regenerative medicine, and the creation of artificial organs are taking the field of transplantology to a new level. These technologies may significantly reduce the demand for donor organs in the near future, thereby addressing organ shortages and offering patients a better quality of life.

3D bioprinting involves additive manufacturing (AM) techniques for producing tissues or organs layer-by-layer. This method uses a bottom-up approach and aims to accurately replicate the microarchitecture of natural tissues by precisely placing biomaterials and living cells. Organs or tissues created via 3D printing resemble their natural counterparts in both structure and function.

3D bioprinting is based on three key approaches:

Biomimicry – mimicking the structure and function of natural tissues

- 1. **Autonomous self-assembly** enabling cells to organize themselves into functional structures,
- 2. **Mini-tissue building blocks** using modular units to construct complex tissues.

An organ or tissue engineered through **3D printing** closely resembles complex natural organ tissue and functions in a similar manner. **3D bioprinting** is based on three fundamental approaches: **biomimicry**, **autonomous self-assembly**, and **the use of mini-tissue building blocks**.

INTERNATIONAL JOURNAL OF MEDICAL SCIENCES

Conclusion: In summary, transplantology and prosthetics are rapidly evolving and intersecting branches of medical science. The synergy between these two fields not only contributes to life-saving interventions but also significantly enhances the quality of life for patients. On a global scale, supporting these processes through the integration of ethical standards, legal frameworks, and technological innovations can lead to greater efficiency within healthcare systems.

References:

- 1. Tripathi, S. et al. (2023). 3D Bioprinting and Its Innovative Approach for Biomedical Applications. MedComm, 4(1). https://doi.org/10.1002/mco2.194
- 1. National library of medicine, national center for biotechnology information.
- 2. Thuong M, Ruiz A, Evrard P, Kuiper M, Boffa C, Akhtar MZ, Neuberger J, Ploeg R. New classification of donation after circulatory death donors definitions and terminology. Transpl Int. 2016 Jul;29(7):749-59. [PubMed]