

INTERNATIONAL JOURNAL OF MEDICAL SCIENCES

ISSN NUMBER: 2692 - 5206 Volume 5.October ,2025

UDC: 616.12-007.271-053.2-073.97-071

ASSESSING THE ROLE AND EFFECTIVENESS OF ECHOCARDIOGRAPHY IN THE EARLY DIAGNOSIS OF CONGENITAL HEART DEFECTS IN CHILDREN

Mukhammadkhonov Abdulfaizkhon Shamsuddinkhon ugli

Department of Propaedeutics of Children's Diseases and Polyclinic Pediatrics, Andijan State Medical Institute

RELEVANCE

Congenital heart defects (CHDs) are the most common type of birth defect, representing a leading cause of infant mortality and morbidity worldwide. Early and accurate diagnosis is critical for timely intervention, which significantly improves clinical outcomes and patient survival. Echocardiography, as a non-invasive, safe, and widely accessible imaging modality, has become the cornerstone of pediatric cardiology. Evaluating its effectiveness and defining its precise role in the early detection of CHDs—from the fetal stage through early childhood—is essential for optimizing diagnostic strategies, improving perinatal management, and enhancing long-term prognoses for affected children. This article explores the current capabilities, limitations, and advancements of echocardiography in this critical area of pediatric medicine.

Keywords: congenital heart defects, echocardiography, pediatric cardiology, early diagnosis, fetal echocardiography, diagnostic effectiveness.

АКТУАЛЬНОСТЬ

Врожденные пороки сердца (ВПС) являются наиболее распространенным видом врожденных дефектов, представляя собой ведущую причину младенческой смертности и заболеваемости во всем мире. Ранняя и точная диагностика имеет решающее значение для своевременного вмешательства, что значительно улучшает клинические исходы и выживаемость пациентов. Эхокардиография, как неинвазивный, безопасный и широко доступный метод визуализации, стала краеугольным камнем детской кардиологии. Оценка ее эффективности и определение точной роли в раннем выявлении ВПС — от внутриутробного периода до раннего детства — является необходимой для оптимизации диагностических стратегий, улучшения перинатального ведения долгосрочных прогнозов для детей с данной патологией. В данной статье рассматриваются текущие возможности, ограничения и достижения эхокардиографии в этой критической области педиатрической медицины.

Ключевые слова: врожденные пороки сердца, эхокардиография, детская кардиология, ранняя диагностика, фетальная эхокардиография, диагностическая эффективность.

INTRODUCTION

Congenital heart defects (CHDs) are the most prevalent birth anomalies globally. The prognosis for children with CHDs is largely dependent on the timing and accuracy of diagnosis. This article provides a comprehensive assessment of the role and effectiveness of echocardiography as the primary tool for the early detection of CHDs. As a non-invasive, radiation-free, and highly informative imaging technique, echocardiography is indispensable in both prenatal and postnatal

INTERNATIONAL JOURNAL OF MEDICAL SCIENCES

ISSN NUMBER: 2692 - 5206

Volume 5, October , 2025

settings. We review the evolution of echocardiographic techniques, from standard two-dimensional (2D) and Doppler imaging to advanced modalities such as three-dimensional (3D) echocardiography and functional imaging. The literature confirms the high sensitivity and specificity of fetal echocardiography for detecting major structural heart defects, which allows for prenatal counseling, delivery planning at specialized centers, and immediate postnatal intervention. Postnatally, transthoracic echocardiography remains the gold standard for confirming diagnoses, assessing hemodynamic significance, and guiding management. Despite its high diagnostic accuracy, challenges such as operator dependency, subtle or evolving lesions, and limited acoustic windows persist. The discussion addresses these limitations and explores how recent technological advancements, including the integration of artificial intelligence, are poised to further enhance the diagnostic capabilities of echocardiography. In conclusion, echocardiography is a powerful and effective modality that has fundamentally transformed the approach to diagnosing and managing CHDs, leading to significantly improved outcomes for pediatric patients.

Congenital heart defects (CHDs) encompass a wide spectrum of structural abnormalities of the heart and great vessels that are present at birth. They are the most common congenital anomaly, occurring in approximately 1% of live births and contributing significantly to infant morbidity and mortality (Van der Linde et al., 2011). The clinical presentation of CHDs can range from asymptomatic murmurs to life-threatening cyanosis and cardiogenic shock. For many critical forms of CHD, survival depends on prompt diagnosis and intervention within the first few days or weeks of life. Delays in detection can lead to irreversible physiological damage, including pulmonary hypertension, heart failure, and neurodevelopmental impairment.

The advent and subsequent refinement of echocardiography have revolutionized the field of pediatric cardiology. This non-invasive ultrasound-based imaging technique provides real-time, high-resolution images of cardiac anatomy, function, and hemodynamics without exposing the patient to ionizing radiation. Its safety and versatility make it the ideal diagnostic tool for use in fetuses, neonates, and children (Ecotown Diagnostics, n.d.).

The primary objective of this article is to critically evaluate the role and effectiveness of echocardiography in the early diagnosis of CHDs. This includes an examination of its application in the prenatal period through fetal echocardiography and its use in postnatal diagnostics. We will review the evidence supporting its diagnostic accuracy, discuss its impact on clinical management and patient outcomes, and consider the challenges and future directions of this essential technology.

LITERATURE REVIEW

The utility of echocardiography in pediatric cardiology has been firmly established over several decades. Its application begins even before birth with fetal echocardiography, a specialized ultrasound performed between 18 and 22 weeks of gestation, or earlier in high-risk pregnancies (Sharland, 2010). The primary goal of fetal echocardiography is the prenatal detection of CHDs. Studies have shown that this technique has a high sensitivity (ranging from 60% to over 90%) for identifying major structural heart defects, particularly in experienced hands (Randall et al., 2016). Prenatal diagnosis is crucial as it allows for comprehensive parental counseling, planning for delivery at a tertiary care center with immediate access to pediatric cardiac services, and initiation of life-saving interventions shortly after birth. This proactive management has been shown to reduce preoperative morbidity and mortality in infants with critical CHDs like transposition of the great arteries and hypoplastic left heart syndrome (Donofrio et al., 2014).

INTERNATIONAL JOURNAL OF MEDICAL SCIENCES

ISSN NUMBER: 2692 - 5206 Volume 5,October ,2025

After birth, transthoracic echocardiography (TTE) is the cornerstone for diagnosing and managing CHDs. Standard 2D echocardiography provides detailed anatomical information, allowing for the precise characterization of defects such as ventricular septal defects (VSDs), atrial septal defects (ASDs), tetralogy of Fallot, and coarctation of the aorta. The addition of Doppler imaging (including color, pulsed-wave, and continuous-wave Doppler) is essential for assessing blood flow patterns, measuring pressure gradients across valves and vessels, and quantifying the severity of shunts and stenotic or regurgitant lesions (Lopez et al., 2010).

Recent technological advancements have further expanded the capabilities of pediatric echocardiography. Three-dimensional (3D) echocardiography offers a more comprehensive understanding of complex spatial relationships between cardiac structures, which is particularly valuable for pre-surgical planning and guiding intracardiac interventions (Bhatla et al., 2012). Functional imaging techniques, such as tissue Doppler and speckle-tracking echocardiography, provide quantitative assessments of myocardial function, which can be impaired even in the absence of overt structural defects.

However, challenges in the early detection of CHDs persist. The accuracy of echocardiography is highly operator-dependent, requiring extensive training and expertise. Some defects may be subtle or may not become hemodynamically significant until after the fetal-to-neonatal circulatory transition. Furthermore, suboptimal acoustic windows in some patients can limit image quality (Medvarsity, 2023).

MATERIALS AND METHODS

This review was conducted by synthesizing information from peer-reviewed scientific articles, clinical guidelines, and reputable medical publications. A comprehensive literature search was performed using databases such as PubMed, Google Scholar, and ScienceDirect. The search strategy included a combination of the keywords listed above.

The evaluation of echocardiography's effectiveness in the referenced studies is typically based on a prospective or retrospective cohort design. In a typical study design:

Patient Population: Infants and children (from birth to 18 years) referred for echocardiography due to clinical suspicion of a CHD (e.g., heart murmur, cyanosis, poor feeding, or an abnormal prenatal screen) are included. Fetal echocardiography studies involve pregnant women with risk factors for fetal CHD.

Echocardiographic Protocol: A standardized, comprehensive TTE is performed using commercially available ultrasound systems equipped with appropriate pediatric transducers. The examination includes M-mode, 2D imaging, and color, pulsed-wave, and continuous-wave Doppler interrogation. Standard imaging planes (parasternal, apical, subcostal, and suprasternal) are used to systematically evaluate all cardiac structures, including chambers, valves, septa, and great vessels.

Diagnostic Confirmation: Echocardiographic findings are typically compared against a gold standard for confirmation. This may include findings from cardiac catheterization, cardiovascular magnetic resonance (CMR), computed tomography (CT), or direct visualization during surgery.

Statistical Analysis: The effectiveness of echocardiography is assessed by calculating key diagnostic accuracy metrics, including sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV).

RESULTS AND DISCUSSION

INTERNATIONAL JOURNAL OF MEDICAL SCIENCES

ISSN NUMBER: 2692 - 5206 Volume 5,October ,2025

The collective results from numerous studies demonstrate that echocardiography is a highly effective and reliable tool for the early diagnosis of CHDs. In postnatal diagnosis, TTE is considered the definitive non-invasive test, often providing sufficient detail to proceed directly to surgical or catheter-based intervention without the need for more invasive diagnostic procedures. For most common CHDs, the diagnostic accuracy of a comprehensive echocardiogram performed by a trained pediatric cardiologist approaches 100%.

For fetal echocardiography, studies report variable but generally high sensitivity and specificity. One study found that fetal echocardiography had a sensitivity of 92.8% and an accuracy of 84.1% for detecting CHDs, though specificity was more moderate (Shirzad et al., 2022). The detection rates are highest for complex, single-ventricle lesions and conotruncal abnormalities and lower for more subtle defects like small VSDs, mild valve abnormalities, or coarctation of the aorta, which can be difficult to visualize in utero.

The impact of an early echocardiographic diagnosis is profound. Prenatal detection allows for a planned and controlled transition to postnatal life, preventing the clinical deterioration that often occurs in undiagnosed newborns with critical, duct-dependent circulation. This has been shown to improve pre-operative stability and may reduce neurological injury (Donofrio et al., 2014). In infants and older children, an accurate diagnosis allows for appropriate medical management, timely referral for intervention, and informed family counseling.

The discussion surrounding the effectiveness of echocardiography must also acknowledge its limitations. Operator skill is paramount; a missed or misinterpreted finding can have serious consequences. To mitigate this, standardized training protocols and quality assurance measures are essential. Furthermore, the evolution of certain cardiac lesions over time necessitates serial echocardiographic follow-up. For instance, a patent ductus arteriosus is normal in a fetus but a defect in an older infant, and some forms of aortic stenosis can progress during gestation. The development of advanced techniques like 3D/4D echocardiography continues to address some of these challenges by providing more realistic anatomical displays and improving the visualization of complex defects.

CONCLUSION

Echocardiography is the undisputed cornerstone of early diagnosis for congenital heart defects in children. Its non-invasive nature, safety profile, and exceptional diagnostic capabilities make it an indispensable tool for both fetal and postnatal cardiac assessment. Through early and accurate identification of CHDs, echocardiography facilitates timely and appropriate management, which has dramatically improved survival and quality of life for countless children.

While challenges related to operator expertise and the detection of subtle lesions remain, ongoing technological advancements, including improved imaging resolution, 3D/4D capabilities, and the emerging role of artificial intelligence in image analysis, promise to further enhance its effectiveness. The continued integration of echocardiography into routine prenatal screening and pediatric care is fundamental to reducing the global burden of congenital heart disease.

REFERENCES:

Bhatla, P., Nielsen, J. C., & Gessner, I. H. (2012). Recent advances in pediatric 1. echocardiography. Current Opinion in Pediatrics, 24(5),589-595. https://doi.org/10.1097/MOP.0b013e328357a3e8

INTERNATIONAL JOURNAL OF MEDICAL SCIENCES

ISSN NUMBER: 2692 - 5206

Volume 5, October , 2025

- 2. Donofrio, M. T., Moon-Grady, A. J., Hornberger, L. K., Copel, J. A., Sklansky, M. S., Abuhamad, A., Cuneo, B. F., Geva, T., Morris, S. A., Powell, A., Rychik, J., & Tworetzky, W. (2014). Diagnosis and treatment of fetal cardiac disease: a scientific statement from the American Heart Association. Circulation, 129(21), 2183–2242. https://doi.org/10.1161/01.cir.0000437597.44550.5d
- 3. Ecotown Diagnostics. (n.d.). Echocardiography for congenital heart defects. Retrieved from https://www.ecotowndiagnostics.com/echocardiography-for-congenital-heart-defects/
- 4. Lopez, L., Colan, S. D., Frommelt, P. C., Ensing, G. J., Kendall, K., Younoszai, A. K., Lai, W. W., & Geva, T. (2010). Recommendations for quantification methods during the performance of a pediatric echocardiogram: a report from the Task Force of the Pediatric Council of the American Society of Echocardiography. Journal of the American Society of Echocardiography, 23(5), 465–495. https://doi.org/10.1016/j.echo.2010.03.019
- 5. Medvarsity. (2023). Congenital heart disease: Challenges of childhood diagnosis. Retrieved from https://www.medvarsity.com/blog/congenital-heart-disease-challenges
- 6. Randall, P., Brealey, S., Hahn, S., Khan, K. S., & Tuffnell, D. J. (2016). Accuracy of fetal echocardiography in the routine detection of congenital heart disease among unselected and low risk populations: a systematic review. BJOG: An International Journal of Obstetrics & Gynaecology, 123(1), 30–38. https://doi.org/10.1111/1471-0528.13621
- 7. Sharland, G. (2010). Fetal cardiology. Indian Journal of Pediatrics, 77(4), 439–446. https://doi.org/10.1007/s12098-010-0043-4
- 8. Shirzad, N., Kholousi, S., & Kazemian, M. (2022). The value of fetal echocardiography for early detection of congenital heart defects: A report of our experience in a great referral heart center in Iran. Journal of Biomedical Research & Environmental Sciences, 3(1), 1-5. https://doi.org/10.37871/jbres1845
- 9. Van der Linde, D., Konings, E. E., Slager, M. A., Witsenburg, M., Helbing, W. A., Takkenberg, J. J., & Roos-Hesselink, J. W. (2011). Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. Journal of the American College of Cardiology, 58(21), 2241–2247. https://doi.org/10.1016/j.jacc.2011.08.025