

**PROGNOSIS OF CIRRHTIC CARDIOMYOPATHY IN
CARDIOHEMODYNAMIC DISORDERS IN PATIENTS WITH VIRAL ETIOLOGY
LIVER CIRRHOSIS**

Badalov Saidikromxon Jalolxonovich

Andijan State Medical Institute, Department of Hospital Therapy.

ANNOTATION: The article discusses cirrhotic cardiomyopathy (CCM) in patients with liver cirrhosis caused by viral infections like hepatitis B and C. It explores the prognosis and management of this cardiac complication within the context of advanced liver disease. CCM involves cardiac structural and functional changes independent of other heart diseases. Key factors include impaired contractility, altered neurohormonal regulation, electrophysiological abnormalities, and myocardial fibrosis.

KEY WORDS: Cirrhotic cardiomyopathy, liver cirrhosis, viral hepatitis, hepatitis B, hepatitis C, cardiac dysfunctio, systolic dysfunctio, diastolic dysfunctio, neurohormonal imbalance

Liver cirrhosis, a progressive condition characterized by extensive fibrosis and loss of liver function, represents a significant burden on global health, affecting millions of people worldwide. Among its myriad complications, cirrhotic cardiomyopathy (CCM) stands out as a distinctive cardiac dysfunction that complicates the clinical course of patients, particularly those with viral etiology liver cirrhosis, such as hepatitis B or C infections. Understanding the prognosis and management of CCM in this context requires a comprehensive exploration of its pathophysiology, clinical implications, and therapeutic approaches.

Pathophysiology of Cirrhotic Cardiomyopathy:

Cirrhotic cardiomyopathy encompasses a spectrum of structural and functional cardiac abnormalities that occur in patients with advanced liver cirrhosis, independent of other known cardiovascular diseases. The exact mechanisms underlying CCM are multifactorial and complex, involving alterations in cardiac contractility, relaxation, and electrophysiological properties. Key pathophysiological features include:

- Cardiac Dysfunction:** Impaired systolic and diastolic function are hallmark features of CCM. Reduced myocardial contractility and relaxation contribute to a blunted response to stress and exercise intolerance.
- Neurohormonal Imbalance:** Dysregulation of neurohormonal systems, including increased sympathetic activity and altered response to circulating vasoactive substances (e.g., nitric oxide), further exacerbates cardiac dysfunction.

Electrophysiological Abnormalities: Prolonged QT interval, increased susceptibility to arrhythmias (especially atrial fibrillation), and altered cardiac ion channel expression characterize the electrophysiological changes in CCM.

Structural Changes: Myocardial fibrosis, hypertrophy of cardiac myocytes, and microvascular dysfunction contribute to the structural alterations observed in CCM.

Impact of Cirrhotic Complications: Ascites, hepatic encephalopathy, and portosystemic shunting can indirectly influence cardiac function through fluid and electrolyte disturbances, exacerbating CCM. Understanding these

underlying mechanisms is crucial for predicting the prognosis and guiding management strategies in patients with viral etiology liver cirrhosis complicated by CCM.

Prognosis of Cirrhotic Cardiomyopathy:

The prognosis of CCM in patients with viral etiology liver cirrhosis varies widely depending on several factors: Severity of Liver Disease: Advanced stages of liver cirrhosis, as indicated by the Child-Pugh score or Model for End-Stage Liver Disease (MELD) score, correlate with a poorer prognosis due to the cumulative impact of liver dysfunction and associated complications. Cardiovascular Function: The extent of cardiac dysfunction, including the degree of systolic and diastolic impairment, significantly influences prognosis. Severe CCM is associated with an increased risk of cardiovascular events such as arrhythmias, heart failure, and sudden cardiac death.

Management of Cirrhotic Complications: Effective management of ascites, hepatic encephalopathy, variceal bleeding, and other complications of liver cirrhosis plays a pivotal role in improving outcomes. Optimal control of fluid and electrolyte balance is crucial in mitigating the impact of CCM. Response to Treatment: The response to pharmacological interventions, including beta-blockers, diuretics, and other therapies aimed at managing cirrhotic complications and optimizing cardiovascular function, influences prognosis. Patient-Specific Factors: Age, comorbidities (such as diabetes mellitus and hypertension), nutritional status, and adherence to medical therapy all contribute to the individual variability in prognosis.

Despite these challenges, early recognition of CCM and comprehensive management strategies can improve outcomes and quality of life in affected patients. Management Strategies for Cirrhotic Cardiomyopathy: Management of CCM in patients with viral etiology liver cirrhosis involves a multidisciplinary approach aimed at addressing both liver disease and cardiovascular dysfunction:

Medical Therapy: Beta-blockers, particularly non-selective beta-blockers like propranolol or carvedilol, are commonly used to manage portal hypertension and reduce the risk of variceal bleeding. These agents may also have beneficial effects on cardiac function by reducing myocardial oxygen demand and improving diastolic filling.

Diuretics: Loop diuretics such as furosemide are utilized to manage ascites and edema associated with liver cirrhosis. Careful monitoring of electrolytes, especially potassium and magnesium, is essential to prevent arrhythmias and exacerbation of CCM. Management of Ascites: Paracentesis, albumin infusion, and pharmacological therapies (e.g., spironolactone) are employed to manage ascites and minimize the impact of fluid overload on cardiac function. Nutritional Support: Optimal nutritional support is crucial in patients with liver cirrhosis and CCM to maintain cardiac function and overall metabolic balance.

Transplant Evaluation: Liver transplantation remains the definitive treatment for end-stage liver cirrhosis and offers potential improvement or resolution of CCM. However, careful assessment of cardiovascular function pre-transplantation is essential to optimize outcomes.

Lifestyle Modifications: Smoking cessation, dietary modifications (e.g., sodium restriction),

and regular physical activity are recommended to mitigate cardiovascular risk factors and improve overall prognosis.

Cirrhotic cardiomyopathy represents a complex interplay between liver dysfunction and cardiovascular impairment in patients with viral etiology liver cirrhosis. Understanding the pathophysiology, prognostic factors, and management strategies is essential for optimizing clinical outcomes in this vulnerable population. Future research efforts aimed at elucidating novel therapeutic targets and improving early detection of CCM are warranted to further enhance patient care and outcomes in this challenging clinical scenario.

REFERENCES:

1. Solnyshkov S. K., Kalinina O. V., Lebedeva A. V., Volchkova S. A. Tsirroticheskaya kardiomiopatiya [Cirrhotic cardiomyopathy] // Vestnik Ivanovskoi meditsinskoi akademii [Bulletin of the Ivanovo Medical Academy]. — 2017. — Vol. 22, No. 3. — P. 44–51. (In Russ.)
2. Kowalski H. J., Abelman W. H. The cardiac output at rest in Laennec's cirrhosis. J Clin Invest. 1953. — N 32 (10). — P. 1025–1033.
3. Abelmann W. H., Kowalski H. J., McNeely W. F. The hemodynamic response to exercise in patients with Laennec's cirrhosis. Clin Invest. — 1955. — N 34. — P. 690–695.
4. Murray J. F., Dawson A. M. Circulatory changes in chronic liver disease // AmJMed. — 1958. — № 24. — P. 358–367.
5. Caramelo C., Fernandez-Mu oz D., Santos J. C., Blanchart A., Rodriguez-Puyol D. Effect of volume expansion on hemodynamics, capillary permeability and renal function in conscious, cirrhotic rats // Hepatology. — 1986. — N 6. — P. 129–134.
6. Golovanova E. V., Komissarenko I. A., Kolechkina I. A., Trubitsyna I. E., Fedotova T. F., Guseinzade M. G., Khanina E. A. Razlichnye mekhanizmy porazheniya serdtsa pri zabolevaniakh pecheni [Various mechanisms of heart damage in liver diseases] // Eksperimentalnaia i klinicheskaya gastroenterologiya [Experimental and Clinical Gastroenterology]. — 2011. — No. 12. — P. 66–72. (In Russ.)
7. Malinovskaia Iu. O., Moiseev S. V, Moisiuk Ia. G. Tsirroticheskaya kardiomiopatiya i transplantatsiya pecheni [Cirrhotic cardiomyopathy and liver transplantation]. // Almanakh klinicheskoi meditsiny [Almanac of Clinical Medicine]. — 2016. — No. 44 (6). — P. 775–784. (In Russ.)
8. Kasianova T. R., Levitan B. N., Timoshenko N. V. Diagnostika tsirroticheskoi kardiomiopati. Rol ekhokardiografii i pronatriureticheskogo peptida [Diagnosis of cirrhotic cardiomyopathy. The role of echocardiography and pronatriuretic peptide] // [Electronic resource] Sovremennye problemy nauki i obrazovaniia [Modern problems of science and education]. — 2016. — No. 5. Access mode: <http://science-education.ru/ru/article/view?id=25136> (date of access: 26.11.2020).