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Abstract 
 

The increasing availability of non-probability samples, often collected rapidly and cost-effectively (e.g., through web surveys), 

presents both opportunities and challenges for statistical inference. While probability samples remain the gold standard for 

unbiased estimation, their cost and declining response rates necessitate innovative methods for integrating data from diverse 

sources. This article explores Matched Mass Imputation (MMI) as a robust and efficient approach for combining information 

from a traditional probability sample with a larger, auxiliary non-probability sample. We detail the methodological 

framework of MMI, which leverages matching techniques to identify suitable donors from the non-probability sample for 

recipients in the probability sample, followed by mass imputation of unobserved variables. This approach aims to mitigate 

biases inherent in non-probability samples and enhance the precision of estimates by effectively utilizing the larger sample 

size. We discuss the theoretical underpinnings, practical implementation considerations, and the conditions under which MMI 

can yield reliable inferences, including the crucial common support assumption and the role of statistical learning methods. 

By synthesizing recent advancements, this paper demonstrates MMI's potential to provide a powerful and flexible solution for 

modern survey data integration, balancing the need for accuracy with the realities of data collection in an evolving landscape. 
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INTRODUCTION 
 

In contemporary statistical practice, the landscape of data collection is rapidly evolving. Traditional probability samples, 

characterized by known inclusion probabilities for each unit, are considered the gold standard for producing unbiased and 

statistically rigorous inferences about a target population [16, 21]. However, these surveys are increasingly expensive to 

conduct, often suffer from declining response rates, and can be time-consuming [1, 18]. Concurrently, the proliferation of 

digital platforms and online panels has led to the widespread availability of non-probability samples. These samples, while 

often large, cost-effective, and quickly accessible [18], inherently lack the probabilistic foundation of traditional surveys, 

making direct inference from them susceptible to significant selection bias [1, 2]. 

The challenge and opportunity lie in effectively integrating these disparate data sources to leverage the strengths of each: the 

inferential rigor of probability samples and the size and cost-efficiency of non-probability samples [1, 12, 28]. Data integration 

aims to combine information from multiple sources to produce more accurate, precise, or comprehensive estimates than could 

be achieved from any single source alone [29]. Various methods have been proposed for this purpose, including weighting 

adjustments (e.g., propensity score weighting) [11, 14, 19], calibration, and direct imputation [4, 5, 12, 30, 31]. 

Among these methods, mass imputation has emerged as a promising technique for data integration [4, 12, 30, 31]. In mass 

imputation, a non-probability sample (often termed the "source" or "donor" sample) is used to impute missing values or 

unobserved variables into a probability sample (the "target" or "recipient" sample). This approach effectively "transfers" 
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information from the larger non-probability sample to the smaller, more representative probability sample, thereby enriching 

the latter and potentially improving the precision of estimates [4, 12]. 

This article focuses on a specific and robust variant: Matched Mass Imputation (MMI). MMI combines the principles of mass 

imputation with advanced matching techniques. The core idea is to identify individuals in the non-probability sample who are 

"similar" to individuals in the probability sample based on a set of common auxiliary variables. Once matched, the unobserved 

variables from the non-probability sample are imputed onto their matched counterparts in the probability sample. This 

matching step is crucial for addressing the selection bias inherent in non-probability samples by ensuring that the imputed data 

comes from donors who are comparable to the recipients in the probability sample [2, 12, 23]. 

The objective of this article is to provide a comprehensive overview of Matched Mass Imputation for survey data integration. 

We will delve into its methodological underpinnings, discuss the critical assumptions required for valid inference, explore the 

role of statistical learning techniques in its implementation, and highlight its advantages and limitations. By doing so, we aim 

to demonstrate MMI as a powerful and flexible approach for navigating the complexities of modern survey data, offering a 

pathway to more reliable and efficient statistical estimates in an era of diverse and often biased data sources. 

METHODS  
The Matched Mass Imputation (MMI) framework for survey data integration involves several key steps, combining principles 

from imputation, matching, and survey sampling theory. This section details the conceptual and methodological components of 

MMI. 

1 Data Sources and Notation 

We consider two primary data sources: 

Probability Sample (P-sample): This is a traditional survey sample drawn from the target population using a known probability 

sampling design (e.g., simple random sampling, stratified sampling). It provides unbiased estimates of population parameters, 

but may be small or have limited variables [16, 21]. Let SP denote the P-sample, with nP units. For each unit i∈SP, we observe 

a set of auxiliary variables Xi and a variable of interest Yi. However, there might be other variables Zi that are not observed in 

SP but are available in the non-probability sample. 

Non-Probability Sample (NP-sample): This is a larger, auxiliary sample collected without a known probability sampling 

mechanism (e.g., online panel, administrative data, big data sources). It typically contains the auxiliary variables Xj and the 

variables of interest Yj, as well as the unobserved variables Zj that we wish to impute into the P-sample [1, 28]. Let SNP 

denote the NP-sample, with nNP units. 

The goal of MMI is to estimate population parameters (e.g., means, totals, regression coefficients) for variables that are only 

available in the NP-sample, by imputing them into the P-sample. 

2 Core Principle: Mass Imputation 

Mass imputation is a general strategy where a variable (or set of variables) observed in a donor dataset is imputed into a 

recipient dataset where it is unobserved [4, 12, 30]. Unlike traditional missing data imputation (where values are missing 

within a single dataset), mass imputation deals with variables that are entirely unobserved in one dataset but fully observed in 

another. The fundamental assumption for valid mass imputation is that, conditional on the observed auxiliary variables X, the 

distribution of the unobserved variable Z is the same in both the P-sample and the NP-sample. This is often referred to as the 

"missing at random" (MAR) assumption, adapted for data integration [15, 20]. 

3 The Role of Matching 

The key innovation of MMI lies in the matching step, which precedes or is integrated with the imputation process [12, 23]. The 

purpose of matching is to reduce the selection bias inherent in the NP-sample by ensuring that for each unit in the P-sample 

(recipient), a "similar" unit (donor) is found in the NP-sample based on common auxiliary variables X. This creates a pseudo-

probability sample from the NP-sample that is more comparable to the P-sample. 

Common matching techniques include: 

Propensity Score Matching: This is a widely used method where the propensity score, e(Xi)=P(unit i∈SP∣Xi), is estimated for 

each unit using logistic regression or other statistical learning methods [11, 23]. Units from the NP-sample are then matched to 

units in the P-sample based on similar propensity scores. This helps to balance the distributions of X between the two samples 

[11, 14]. 

Nearest Neighbor Matching: For each unit in the P-sample, the closest unit(s) in the NP-sample are identified based on a 

distance metric computed from the auxiliary variables X [23, 24]. 

Kernel Weighting: A related approach that assigns weights to NP-sample units based on their similarity to P-sample units, 

often using kernel functions [11, 26]. This can be seen as a form of "soft matching." 

The matching step is crucial for satisfying the conditional independence assumption required for valid imputation. It attempts 

to achieve the "common support" assumption, meaning that for every unit in the P-sample, there exists a similar unit in the NP-

sample [6]. 

4 Matched Mass Imputation Procedure 

The MMI procedure can be summarized as follows: 

Identify Common Auxiliary Variables (X): Both the P-sample and NP-sample must share a set of common auxiliary variables 

X that are predictive of the variables of interest Y and Z, and also predictive of sample membership (i.e., whether a unit 
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belongs to the P-sample or NP-sample). 

Matching (or Weighting) Step: 

Propensity Score Estimation: Estimate the propensity score for each unit, representing the probability of being in the P-sample 

given X. Statistical learning methods like boosted kernel weighting [11] or generalized additive models (GAMs) [29] can be 

employed to model this relationship, especially with high-dimensional X [14]. 

Matching/Weighting: Match each unit in the P-sample to one or more units in the NP-sample based on their propensity scores 

or other similarity measures. Alternatively, assign weights to NP-sample units based on their propensity scores to make them 

representative of the P-sample. 

Common Support Check: Verify that there is sufficient overlap in the distribution of X (or propensity scores) between the P-

sample and the NP-sample [6]. Units outside the common support region in the NP-sample may need to be excluded. 

Imputation Step: For each unit i in the P-sample, identify its matched donor(s) from the NP-sample. The unobserved variable 

Zi in the P-sample is then imputed using the observed Z values from its matched donor(s). 

Imputation Method: This can range from simple mean imputation (using the mean of Z from matched donors) to more 

sophisticated methods like regression imputation (predicting Z based on X from matched donors) or hot-deck imputation 

(randomly selecting a Z value from a matched donor) [4]. Nonparametric mass imputation methods can also be used [4]. 

Inference: Once the P-sample is augmented with the imputed variables, standard survey estimation techniques (e.g., Horvitz-

Thompson estimator [8], generalized regression estimator [21]) can be applied, taking into account the original survey weights 

of the P-sample and incorporating variance estimation methods that account for the imputation process [4, 12, 30, 31]. 

5 Assumptions for Valid Inference 

The validity of MMI relies on several critical assumptions: 

Conditional Independence (MAR-like): The distribution of the unobserved variable Z in the NP-sample is the same as in the P-

sample, conditional on the observed auxiliary variables X. That is, Z⊥sample type∣X. This is a strong assumption, and the 

matching step aims to make it more plausible by creating comparable groups [15, 20]. 

Common Support: For every unit in the P-sample, there exists a comparable unit in the NP-sample based on the auxiliary 

variables X [6]. If this assumption is violated, extrapolation may be required, which can introduce bias. 

Correct Model Specification: If propensity scores or imputation models are used, they must be correctly specified. Statistical 

learning methods like random forests [17] or generalized additive models [29] can help in modeling complex relationships in X 

to improve propensity score estimation and imputation accuracy [11, 14]. 

2.6 Variance Estimation 

A crucial aspect of MMI is proper variance estimation. Simply treating the imputed values as observed data will underestimate 

the true variance. Methods for variance estimation in mass imputation include: 

Bootstrap or Jackknife: Resampling techniques that account for both sampling variability and imputation variability [4]. 

Analytic Variance Formulas: Deriving specific formulas that incorporate the uncertainty introduced by the imputation process 

[4, 12, 30]. 

By carefully implementing these steps and considering the underlying assumptions, MMI offers a powerful framework for 

integrating diverse survey data. 

RESULTS (Performance and Applications) 

The application of Matched Mass Imputation (MMI) has demonstrated significant potential in enhancing the quality of 

inferences drawn from integrated survey data, particularly when combining probability and non-probability samples. Empirical 

studies and theoretical analyses have highlighted its effectiveness in bias reduction and precision improvement. 

1 Bias Reduction in Non-Probability Samples 

A primary objective of MMI is to mitigate the selection bias inherent in non-probability samples [1, 2]. By matching units from 

the non-probability sample to those in the probability sample based on common auxiliary variables, MMI effectively creates a 

subset of the non-probability sample that is more representative of the target population. 

Propensity Score Effectiveness: Research consistently shows that propensity score matching, a core component of MMI, is 

effective in balancing covariates between the probability and non-probability samples [11, 14, 23]. This balancing reduces the 

bias in estimates of variables of interest that are transferred from the non-probability sample [5, 12]. For instance, studies 

comparing different data integration methods have found that approaches incorporating matching or weighting based on 

propensity scores yield less biased estimates than simpler methods that ignore the selection bias [5, 12, 28, 30]. 

Doubly Robust Properties: Some implementations of mass imputation, particularly those that combine matching/weighting 

with a robust imputation model, exhibit "doubly robust" properties [5, 31]. This means that the estimator remains consistent if 

either the propensity score model or the imputation model is correctly specified, providing a safeguard against model 

misspecification and further contributing to bias reduction. 

2 Precision Enhancement 

Beyond bias reduction, MMI leverages the larger size of the non-probability sample to improve the precision of estimates. 

Increased Effective Sample Size: By imputing unobserved variables from a large NP-sample into a smaller P-sample, MMI 

effectively increases the amount of information available for analysis, leading to estimates with smaller variances [4, 12, 30]. 

This is particularly beneficial when the P-sample is small or when estimating parameters for rare subgroups. 
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Comparison with Other Methods: Studies comparing MMI with methods like direct weighting (where only the NP-sample is 

weighted to match the P-sample) show that MMI can achieve comparable or even superior precision, especially when the 

imputation model is strong [4, 12, 30]. The ability to impute a full set of variables allows for more flexible downstream 

analyses than just weighting. 

3 Role of Statistical Learning Methods 

The effectiveness of MMI is often enhanced by the judicious use of statistical learning methods in both the matching and 

imputation stages. 

Improved Propensity Score Estimation: When dealing with a large number of auxiliary variables or complex relationships, 

traditional logistic regression for propensity score estimation may be insufficient. Methods like boosted kernel weighting [11], 

random forests [17], or generalized additive models (GAMs) [29] can capture non-linear relationships and interactions among 

covariates more effectively, leading to better-estimated propensity scores and, consequently, more accurate matching [11, 14]. 

This is particularly relevant for high-dimensional data [14, 31]. 

Nonparametric Imputation: Nonparametric mass imputation methods, which do not rely on strong parametric assumptions 

about the relationship between X and Z, can be more robust to model misspecification [4]. These methods often leverage 

concepts from machine learning to find suitable donors. 

4 Practical Applications and Case Studies 

MMI and related data integration techniques have found practical application in various domains: 

Public Health Surveys: For instance, in the context of the National Health and Nutrition Examination Survey (NHANES) [3], 

where detailed health data from a probability sample could be augmented with information from large administrative datasets 

or non-probability health panels to estimate disease prevalence or risk factors more precisely [14]. 

Social Science Research: Integrating data from traditional demographic surveys with online panel data to study social trends or 

public opinion [2, 28]. 

Official Statistics: National statistical offices are increasingly exploring data integration techniques to supplement traditional 

surveys with administrative records or big data sources, aiming for more timely and granular statistics while maintaining data 

quality [18]. 

While MMI offers significant advantages, its success hinges on the careful selection of auxiliary variables, validation of the 

common support assumption, and appropriate variance estimation [1, 6, 12]. 

DISCUSSION 
The growing demand for timely and cost-effective statistical insights, coupled with the challenges facing traditional probability 

surveys, underscores the critical importance of robust data integration methodologies. Matched Mass Imputation (MMI) stands 

out as a powerful and flexible approach for combining the inferential strength of probability samples with the scale and 

efficiency of non-probability samples. 

1 Strengths of Matched Mass Imputation 

MMI offers several compelling advantages for survey data integration: 

Bias Reduction: By employing matching techniques (e.g., propensity score matching) based on common auxiliary variables, 

MMI directly addresses the selection bias inherent in non-probability samples [2, 11, 12, 23]. This is crucial for making valid 

inferences about the target population, as simply weighting or imputing without careful matching can perpetuate bias [1, 6]. 

Precision Enhancement: The ability to impute variables from a large non-probability sample into a smaller, representative 

probability sample effectively increases the information content available for analysis [4, 12, 30]. This leads to more precise 

estimates, particularly for variables that are rare or for analyses requiring fine-grained demographic breakdowns. 

Flexibility in Analysis: Once the probability sample is augmented with imputed variables, analysts can perform a wide range of 

statistical analyses (e.g., regression, subgroup analysis) as if the data were fully observed, using standard statistical software 

[4]. This is often more flexible than methods that only provide adjusted weights. 

Doubly Robust Properties: As noted in the results, some MMI variants can achieve double robustness, providing a safeguard 

against misspecification of either the matching model or the imputation model [5, 31]. This makes the method more resilient in 

practice. 

Utilization of Statistical Learning: The framework naturally accommodates advanced statistical learning methods for 

propensity score estimation and imputation, allowing for the capture of complex relationships in high-dimensional data and 

potentially improving the accuracy of both matching and imputation [11, 14, 17, 29]. 

2 Challenges and Limitations 

Despite its strengths, the successful implementation of MMI is contingent upon addressing several methodological and 

practical challenges: 

Strong Assumptions: The core assumption of conditional independence (or MAR-like assumption) is fundamental. This means 

that, after controlling for common auxiliary variables X, the non-probability sample must be conditionally representative of the 

target population with respect to the unobserved variables Z [15, 20]. If important confounding variables are not available in X, 

residual bias may persist. 

Common Support: The common support assumption is critical [6]. If there are segments of the probability sample that have no 

comparable units in the non-probability sample (i.e., outside the common support), MMI may lead to biased estimates or 
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require extrapolation, which is inherently risky. Careful assessment and potentially trimming of units outside common support 

are necessary [13]. 

Selection of Auxiliary Variables: The choice and quality of common auxiliary variables X are paramount. These variables must 

be strongly related to both the outcome variables and the propensity of being in the probability sample [14]. Poorly chosen or 

insufficient auxiliary variables can lead to ineffective matching and residual bias. 

Variance Estimation: Accurately estimating the variance of MMI estimators is complex, as it must account for both the 

sampling variability from the probability sample and the additional variability introduced by the imputation process [4, 12, 30]. 

Simplified variance estimation can lead to overly optimistic confidence intervals. 

Computational Complexity: For very large datasets, especially when employing sophisticated statistical learning methods for 

matching and imputation, the computational demands of MMI can be substantial. 

3 Future Directions 

Future research in Matched Mass Imputation and survey data integration should focus on: 

Robustness to Assumption Violations: Developing methods that are more robust to violations of the conditional independence 

and common support assumptions, perhaps through sensitivity analyses or partial identification techniques. 

Automated Auxiliary Variable Selection: Exploring automated or semi-automated methods for selecting optimal auxiliary 

variables, especially in high-dimensional settings, potentially leveraging causal inference principles. 

Advanced Statistical Learning Integration: Further integrating cutting-edge statistical learning and machine learning algorithms 

for more flexible and accurate matching and imputation models, while ensuring interpretability and theoretical guarantees. 

Unified Frameworks for Multiple Imputation: Developing MMI within a multiple imputation framework to provide more 

robust variance estimates and account for imputation uncertainty more comprehensively [20]. 

Software Development: Creating user-friendly and computationally efficient software packages that implement MMI and its 

variance estimation methods, making it more accessible to practitioners. 

Applications to New Data Sources: Exploring the application of MMI to emerging data sources, such as sensor data, social 

media data, or administrative records, in conjunction with traditional surveys. 

CONCLUSION 
Matched Mass Imputation represents a sophisticated and increasingly vital approach for integrating data from diverse survey 

sources. By strategically combining the principles of matching and mass imputation, it offers a powerful mechanism to 

mitigate the inherent biases of non-probability samples while leveraging their scale to enhance the precision of estimates 

derived from representative probability samples. The method's ability to accommodate advanced statistical learning techniques 

further strengthens its capacity to handle complex data structures and relationships. 

While the successful application of MMI relies on careful consideration of its underlying assumptions, particularly conditional 

independence and common support, and requires robust variance estimation, its potential benefits for modern survey statistics 

are undeniable. As the landscape of data collection continues to evolve, MMI provides a crucial pathway for researchers and 

practitioners to produce more accurate, efficient, and timely statistical inferences, contributing significantly to evidence-based 

decision-making in an increasingly data-rich world. 
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