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ABSTRACT 

P&C insurers are increasingly pressured to identify and effectively predict risk. While traditional methods, such as 

actuarial models and manual assessments, are effective for identifying patterns in large-scale policy and claims data, 

they struggle to capture complex patterns, like resistance curves. This paper examines how predictive risk modelling 

can be implemented in practice using Guidewire DataHub and Power BI Embedded Analytics. Power BI is used for 

interactive visualization and real-time decision support, whereas Guidewire Data Hub is utilized as a centralized 

platform for storing and managing structured insurance data. It utilized structured data from claim history, 

underwriting attributes, policy details, and customer profiles to build a predictive model. Machine learning 

algorithms, such as Random Forest and Logistic Regression, were then applied to classify policyholders as High, 

Medium, or Low risk after preprocessing and feature selection. Standard metrics (accuracy, precision, recall, ROC-

AUC) were used to evaluate model performance. The Random Forest classifier achieves an accuracy of 84% and 

identifies high-risk profiles most effectively. It then integrated these predictions with Power BI dashboards, allowing 

underwriters and analysts to explore risk at both the individual and portfolio levels. The study illustrates how 

building data platforms that integrate machine learning and embedded analytics facilitates more innovative 

underwriting, fraud detection and pricing. In a competitive, data-driven insurance environment, the ability to turn 

raw insurance data into actionable insights provides significant operational and strategic value. 
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1. INTRODUCTION 

Risk evaluation is the backbone for all policy decisions, pricing strategies and operating mechanisms in the insurance 

industry. Insurers within the Property and Casualty (P&C) segment grapple with a broad range of risk types, from 

automobile collisions to property damage, natural disasters, and fraudulent claims. To effectively manage these 

risks, one must understand how likely future events are and their potential impact. Historical data analysis, 

underwriters’ professional judgment and actuarial models have traditionally been the basis for assessing risk. While 

these approaches remain useful, they are insufficient to address the complexity, scale, and velocity of modern 

insurance data. 

With readily available digital data and the attraction to cloud-based platforms, the entire insurance process has 
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undergone a massive significant transformation. As insurers shift to data centric operations, attention is now 

focused on moving from static reporting to dynamic, real-time analytics. It allows a proactive and more informed 

decision process. However, data is meaningful only subsequently, and yet raw data alone is of little value; it is what 

is made of it that counts. The capability to predict meaningfully has become a critical gap that predictive modelling 

helps address. Predictive models learn from historical patterns to estimate the probability of future events 

occurring, such as future policyholder claims, premium payment lapses, or potential fraud. Using these insights, 

underwriting accuracy can be improved, pricing structures refined, claims triage can be enhanced, and operational 

losses can be reduced. However, with the advent of modern technology solutions, it is now possible to integrate 

predictive analytics directly into business processes.  

One such platform is Guidewire DataHub, which is built specifically for the insurance industry. This unifies the 

repository of data and brings it to a single place, capturing and organizing management, billing systems, and 

customer touchpoints, reducing the need for researchers to gain access to clean and consolidated data necessary 

for reliable analytics. When combined with other business intelligence tools, such as Microsoft Power BI, this data 

serves as a basis for building interactive dashboards, visual risk monitoring, and enterprise reporting. 

The construct of the present study aims to develop a predictive risk classification model based on structured data 

from a simulated Guidewire DataHub environment. The idea behind the project is to categorize policyholders into 

distinct risk categories (e.g., low, medium, high risk) by examining indicators related to their behavior and historical 

data. The model is then trained using supervised machine learning algorithms aided by features extracted from 

policy, claim and customer datasets. The model is then trained and validated, and the outputs are then integrated 

into an embedded Power BI dashboard. Insurance professionals utilize this dashboard to visualize risk scores, claim 

trends, and feature-level insights in real time, thereby eliminating the need for technical teams to be involved in 

the process. To offer a scalable and practical solution for improving risk assessment in P&C insurance, this approach 

combines advanced analytics, data warehousing, and interactive visualization. Greater accuracy and visibility in 

classifying risk enhance operational efficiency and support strategic decision-making, all of which offer a 

competitive advantage in a data-driven marketplace. 

2. LITERATURE REVIEW 

This section reviews current research and professional practices in predictive risk modelling for P&C insurance (4). 

It covers developments in data platforms, analytics tools, and modelling techniques that enhance underwriting, 

pricing, and fraud detection. 

2.1 Insurance Predictive Risk Modelling 

In modern insurance analytics, predictive modelling is a major player. Primarily, these models are used to estimate 

claim likelihood, detect fraud, and provide a basis for pricing. Logistic regression, decision trees, and ensemble 

models are widely used supervised machine learning algorithms for classifying risk using historical data. These 

models can process more variables and identify more complex patterns more quickly than traditional actuarial 

techniques while still acknowledging their limitations when compared with manual analysis. Risk assessments 

increasingly utilize behavioral and transactional variables, such as previous claims, payment delays, and changes in 

policy coverage. These variables provide insight into behavior and risk. The availability of larger and more detailed 

datasets has enabled the achievement of better model performance and more precise segmentation. 

As shown in the figure below, predictive analytics in insurance supports a wide range of objectives, including 

improved risk assessment, fraud detection, cost reduction, enhanced customer experience, and regulatory 
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compliance. 

 

Figure 1: predictive-analytics-in-insurance-industry 

 

2.2 Risk Modeling Driven by Data Platforms 

Insurers can manage and structure information from multiple departments using modern data platforms. New 

systems, such as Guidewire DataHub, provide a single location for consolidating policy, claims, billing, customer 

service data, and more. This centralization improves consistency across applications and simplifies analytics by 

eliminating data duplication. By creating a unified data environment, these platforms allow risk models to be built 

using clean, reliable inputs. Moreover, structured and well-governed data makes it easier to comply with regulatory 

standards and internal audit protocols. As noted by Goel, building resilient systems—whether in supply chain or 

data management—depends on reducing fragmentation and enabling robust foundational infrastructures (14). 

2.3 Embedded analytics tools 

This provides non-technical users, such as underwriters and claims managers, with the ability to interact with model 

results in real-time, using embedded analytics tools like Microsoft Power BI. Organizations can build dashboards 

that depict essential insights, including claim trends, risk levels, and possible fraud indicators, using these tools. 

Dashboards offer visual summaries that enable informed decisions and eliminate the need for static reports (12). 

Embedded analytics combines real-time data feeds with user-friendly visuals to increase transparency and provide 

alignment of decisions between departments. The added value lies in the ability to drill down into individual policy 

details or gain insight into trends at a portfolio level. 

2.4 Machine Learning Techniques for P&C Risk Assessment 

In the insurance sector, a wide range of machine learning models is used. Ensemble methods, such as Random 

Forest and XGBoost, are renowned for their high accuracy and their ability to work effectively with various types of 

variables. Furthermore, they can determine which variables contribute the most to risk predictions (supporting the 

explainability). Insurance has also been tested with advanced models, including neural networks, to determine 

complex patterns such as fraud. These models, however, are less transparent and more difficult to explain to 
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business users or regulators. Therefore, in many occasions, environments where transparency is essential, simpler 

models with explainable logic are preferred. SHAP, an explainable AI tool, is used to explain complex models and 

provide detailed feedback on individual predictions. These serve to maintain faith and ensure that, if necessary, an 

export format for audits and reviews of model outputs remains possible. 

As shown in the figure below, machine learning supports various underwriting tasks including creditworthiness 

assessment, fraud detection, insurance risk assessment, pricing strategies, and portfolio management. 

 

Figure 2: underwriting-machine-learning-models 

2.5 Gaps in the Existing Literature 

Predictive modelling is a proven area; however, some unexplored areas within this field also have significant gaps. 

One notable gap is the lack of studies documenting how data platforms, modelling toolkits, and visualization 

dashboards can be integrated cohesively into a unified system. The existing research is mainly focused on modelling 

or data, but not on the combination of both. Ensuring consistency and real-time responsiveness is essential to 

operationalizing analytics-driven systems, which parallels the need for integration in insurance predictive modelling 

(10). Insurers also lack guidance on the use of predictive models in operational live environments, where they must 

make their results accessible and understandable. This paper fills these gaps by presenting an end-to-end, practical 

approach to risk modelling built on Guidewire DataHub and Power BI, aligning with the call for scalable, 

performance-driven solutions in complex data infrastructures (11). 

 
3. Theoretical Framework 

3.1 Risk Modeling Principles in P&C Insurance 

Property and Casualty (P&C) insurance risk modelling is used to estimate the likelihood and magnitude of future 

losses that may occur due to a claim, policyholder behavior, or an external event (19). Vehicle collisions, property 

damage, liability exposure and insurance fraud are common types of risk. These risks have traditionally been 

handled by insurers using actuarial techniques. However, such methods require stable, linear relationships and are 

mostly limited to low-dimensional, low-dimensional data. A predictive modelling approach provides a more 
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adaptive solution, leveraging historical patterns, behavioral indicators, and real-time data inputs to forecast. These 

models are key for accurate underwriting, customer segmentation and proactive claims management. 

As illustrated in the figure below, the P&C insurance sector is rapidly evolving, driven by multiple industry trends. 

These trends—including digital transformation, predictive analytics, and customer-centric innovations—are 

reshaping traditional risk modeling strategies and highlighting the need for adaptable, data-driven approaches. 

 

Figure 3: Property & Casualty Insurance Industry Trends 

3.2 Predictive Analytics and CRISP-DM Process. 

The Cross Industry Standard Process for Data Mining (CRISP-DM) provides a structured method for developing and 

applying predictive models (27). The first step of this process involves understanding the business problem (in the 

insurance case, this might mean improving the accuracy of underwriting or reducing the fraudulent claims rate). 

Once the objective is defined, the next step is to understand and explore the dataset, then clean, transform and 

prepare the data for modelling. Then, they select the algorithms needed to build the models and evaluate them 

through metrics such as accuracy and error rate. The final stage is to provide a way for the models to be deployed 

in a system that decision-makers can access and use. The CRISP-DM framework ensures that the modelling process 

is aligned with business needs and that this process is repeatable within a disciplined workflow. 

3.3 Feature engineering and dimensionality reduction. 

Insurance data is often diverse and voluminous, consisting of structured information such as policy attributes, 

customer demographics, vehicle specifications, and historical claim records. The choice of algorithm is not the sole 

determinant of modelling quality; the quality of the input features also matters. Feature engineering involves 

selecting, transforming, or creating variables that serve as proper signals for the prediction task. Encoding 

categorical variables, normalizing numerical fields, and handling missing data may be involved in this process. 

Dimensionality reduction techniques are employed to enhance model performance and interpretability further. 

Using correlation-based feature selection, it selects and stores only variables that have a strong statistical 
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relationship with the target variable, eliminating others that include noise or redundancy. Principal component 

analysis is one ‘feature reduction’ algorithm that simplifies the dataset by transforming the original features into a 

smaller set of derived components that capture the most variance in the data (1). Furthermore, these methods can 

streamline the modelling process and reduce the risk of overfitting. 

3.4 Risk Classification with Machine Learning 

Several widely used supervised machine learning algorithms are employed in insurance risk classification. Logistic 

regression is a linear, logically interpretable model for predicting an outcome as a function of multiple inputs. 

Decision trees and random forests are flexible models that can convert numerical data with categorical data and 

generate easily understandable decision rules. Gradient boosting and other methods using ensemble combine 

several base models into a structured sequence, leading to higher prediction accuracy. Neural networks and deep 

learning methods can model complex, non-linear relationships, but often in less transparent and more challenging 

environments for regulatory applications. Both algorithms and their characteristics are a function of the data 

(including its size and dimensionality), the desire for interpretability and the operational environment. Error 

metrics, such as mean absolute error (MAE), root mean squared error (RMSE), and area under the receiver 

operating characteristic curve (AUC), are used to assess models and ensure they are both accurate and reliable in 

their predictions. 

3.5 Business Intelligence Integration & Decision Support 

Predictive risk modelling is the ultimate goal, helping to support decision-making within the insurance organization 

(38). Model outputs must be presented in a clear and accessible format to be actionable. Interactive dashboards 

created with Power BI Embedded are business intelligence tools that visually render model results, allowing users 

to explore them. Directly connected to live data sources from Guidewire DataHub, these dashboards provide 

current insights, including customer risk scores, claim frequency trends, and regional risk concentrations. These 

insights can be used by users (such as underwriters, analysts, and claims managers) to select priority cases, adjust 

prices or flag suspicious activity. Using a visual and data-driven approach speeds up and helps make more informed 

and transparent decisions across sections. Analytics are integrated into daily operations, ensuring predictive models 

deliver meaningful business value rather than remaining closed to technical teams, similar to how integrated 

systems in healthcare and security pipelines enhance operational responsiveness (23,34). 

 

4. System Architecture Overview 

4.1 Overview of Architecture Design 

Predictive risk modelling is designed to be supported by an architecture that enables seamless integration between 

core insurance data systems, machine learning environments, and business intelligence tools. The five major 

components include data extraction from Guidewire DataHub, data transformation and staging, centralized 

storage, training machine learning and embedded analytics with Power BI. The modular design of the system 

ensures that it can scale, be maintained, and be made accessible to data science and business user teams (36,37). 

4.2 ETL Pipeline from Guidewire Data Hub 

Data extraction begins with scheduled jobs or API-based connectors that extract structured data from Guidewire 

DataHub. Policy records, claim transactions, billing activity, and customer profile information are all extracted 

datasets. The transformation layer processes these datasets by imputing missing values, encoding categorical 
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variables and deriving new ones. The transformed data are placed in a staging layer for use in validation and quality 

control. Standardizing data in this step ensures that data aligns with enterprise data governance policies. The image 

below illustrates a standard ETL (Extract, Transform, Load) architecture. Data from various sources—including 

RDBMS, API endpoints, cloud services, and flat files—is first extracted and moved to a staging area. 

The image below illustrates a standard ETL (Extract, Transform, and Load) architecture. Data from various sources—

including RDBMS, API endpoints, cloud services, and flat files—is first extracted and moved to a staging area. 

 

Figure 4:  ETL data pipelines 

4.3. Data Lake and Model Training Environment 

Once pre-processed, data is loaded into a secure data lake environment. This is the central place where raw and 

processed insurance data sit (35). It is designed to handle massive volumes of structured records and supports both 

batch and incremental updates. Datasets are pulled from the data lake to the machine learning workspace, which 

is populated with Python-based tools (Pandas, sci-kit-learn, XGBoost) specific to the case study at hand. Models are 

trained for this environment using supervised learning algorithms ie. Random Forest, Logistic Regression.  

4.4 Reporting Layer and Power BI Embedded Integration 

Outputs of the model, such as risk scores, class labels, and feature importance’s, are pushed to a reporting database 

or published as API endpoints once the model is trained. The outputs of these data pipelines are then consumed by 

Power BI Embedded, which creates interactive dashboards for business users to view. Key risk indicators are 

presented at the policy, customer, and portfolio levels through dashboards. Heat maps, claim trend lines, 

classification summaries, and filterable reporting by geography, policy type, or time frame are visual elements. 

Embedded within internal web-based applications or portals, these interfaces provide near real-time access to 

insights for users, including risk analysts and underwriters, without requiring them to leave one platform (21, 22). 

4.5. Data Governance, Security and Compliance 

Data governance measures are firmly integrated with the architecture. Access control is implemented via role-
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based permissions, thereby limiting a user's interaction to only what they should be interacting with based on their 

role. Modelling and dashboard reporting mask personally identifiable information to protect our customers' 

privacy. All activities related to data processing and model prediction are logged for traceability and auditability. 

The architecture adheres to industry standards, such as GDPR and local insurance regulations, regarding data 

handling, which means that predictive models can be deployed in an operationally and legally compliant manner. 

5. Dataset Description 

5.1 Overview of Data Source 

The structured records used in this predictive risk modelling study consist of simulated Guidewire DataHub records 

that conform to the structure of actual P&C insurance data systems (30). It contains anonymized and synthetic 

records that represent the kind of data insurance companies collect during a policy lifecycle. The data spans multiple 

years and includes records about customer profiles, policy issuance, endorsements, claims events, payments, and 

renewals. This precisely defines the structure of the data so that it not only represents real-world insurance 

operations but also provides sufficient details to enable meaningful risk classification and prediction, supporting 

the need for fault-tolerant, context-aware data environments as emphasized in modern event-driven architectures 

(5, 6). 

The visual below outlines the typical cycle followed in predictive analytics. It begins with data collection, followed 

by model selection, training, deployment, and continuous monitoring. This process mirrors the workflow used in 

this study to build, test, and integrate the insurance risk prediction model based on Guidewire DataHub data. 

 

Figure 5: automation-and-ai-role-in-enhancing-predictive-analytics-for-marketers 

 

5.2 The volume and structure of the data 

It includes about 58,000 policy records over 120 attributes. The values are a mix of categorical, numerical, and 

date/time (7). Customer age, policy type, coverage limits, vehicle details, number of claims filed, claim amounts, 

geographic location, payment patterns, and policy tenure are some of the key fields. The dataset consists of 
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transactional records, such as claims and billing events, which are linked together by a unique customer ID and 

policy ID; each record in the dataset maps to an individual policyholder. The tabular format (CSV and Parquet) data 

was easy to integrate with external modelling tools and visualization platforms as it was exported from a sandbox 

version of Guidewire DataHub. 

Various types of data attributes used in the analysis, including both numerical and categorical variables, are 

summarized in the Table below. 

 
Table 1: Data Types and Examples 

Data Attribute  Type Example Value 

Customer Age  Numerical 42 

Policy Type  Categorical Comprehensive 

Vehicle Value  Numerical 25,000 

Region  Categorical Northeast 

Number of Claims Filed  Numerical 2 

Claim Amount  Numerical 6,300 

Payment Method  Categorical Auto-Debit 

 

5.3 Data Quality and Data Preprocessing 

The dataset was assessed for completeness, consistency, and accuracy before being analyzed. Much of the data 

included in these fields (with optional fields such as secondary driver information or claim cause details) was either 

missing or inconsistent. The multiple imputation technique, using chained equations, was employed to handle 

missing data. This fills in missing values by modelling each field as a function of the other fields, making it more 

robust to recovery than simple mean or median substitution (32). In fields like total claim amount and policy 

premium, outliers were also identified. To mitigate the impact of extreme but rare cases, these values were capped 

at the 95th percentile. To prepare categorical fields such as region, vehicle type, and policy channel for machine 

learning algorithms, these were encoded via one-hot encoding. To avoid model training being skewed by attributes 

on differing scales (such as age and claim amount), numerical variables were normalized. Derived features were 

also created to augment the predictive power of the model. Some examples of these fields include claim frequency 

per policy year, time since the last claim, payment delinquency score, and loss ratio (historical). Architecting these 

engineered features is crucial in distinguishing risk profiles that would otherwise appear identical based on the raw 

data. 

The key variables incorporated into the predictive model, along with their respective types and importance levels, 

are summarized in the Table below. 
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Table 2: Key Variables Used in the Model 

Variable Name Type Role in Model 

Claim Frequency Numerical High Importance 

Loss Ratio Numerical High Importance 

Payment Delinquency 

Score 
Numerical 

Medium 

Importance 

Time Since Last Claim Numerical 
Medium 

Importance 

Policy Tenure Numerical 
Medium 

Importance 

Vehicle Type Categorical Low Importance 

Geographic Region Categorical Low Importance 

 

5.4 Definition of the target variable 

This dataset has a categorical label as its response variable, meaning they are the risk class of each policyholder. 

The class is based on a composite of historical claims activity, policy behavior, and loss ratios. The categories into 

which the variable is labelled are three: low risk, medium risk, and high risk. The internal underwriting rules, 

commonly used in the P&C industry, were applied to the classification logic. For example, if there is a high frequency 

of claims in a short duration or a high total loss ratio, the probability that a policyholder will be classified as high 

risk would also increase. Supervised learning works from this labelled output. The model being learned is a trained 

machine-learning algorithm that attempts to understand the relationship between input features and the assigned 

risk class. To evaluate the performance during model evaluation, the accuracy of these predictions is compared 

against their known risk classes in the validation dataset (25). 

 
6. Research Methodology 

This section outlines the steps taken to develop and evaluate a predictive risk model for P&C insurance, utilizing 

data from Guidewire Data Hub. It involves data preparation, feature engineering, algorithm selection, model 

training, and validation. Practical constraints found in the insurance industry, such as interpretability, data quality, 

and business usability, serve as a guide for the methodology. 

6.1 Research Design and Approach. 

The study design employs a quantitative research approach grounded in empirical data and driven by a risk 

classification methodology (2). On the historic policy and claims dataset, supervised machine learning is applied to 

predict the likelihood of a policyholder being in a particular risk category. The objective is to develop the model 

such that it generalizes well to unseen data and can be effectively utilized in a real-world setting (e.g., to support 

underwriting decisions). This is a predictive approach, and unlike regression, the target variable is a set of discrete 
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risk categories (levels), which means it is a classification rather than a regression. The methodology utilizes the 

CRISP-DM process model, which helps maintain business alignment and technical rigor throughout the project 

execution. It begins with business understanding and then proceeds through data preparation, modeling, 

evaluation, and deployment, with each phase being highly iterative and incorporating refinements. 

The overall data mining process followed in this project is structured according to the CRISP-DM methodology, with 

its key phases and their applications summarized in the Table below. 

 
Table 3: Simplified CRISP-DM Phases 

Phase Focus Application 

1. Business Understanding Define goals Align model with underwriting and risk-based decisions 

2. Data Understanding Explore and assess data Review policy and claims data; check quality 

3. Data Preparation Clean and transform Engineer features; normalize variables 

4. Modeling Build predictive model Use Random Forest, Decision Trees; tune parameters 

5. Evaluation Measure performance Use accuracy, recall, F1-score; validate with business goals 

6. Deployment Integrate and report Deploy via Power BI dashboards for real-time risk scoring 

 

6.2 Data Preprocessing and Feature Engineering 

Raw data from Guidewire DataHub required certain preprocessing to ensure machine learning suitability. Outliers 

were treated using percentile capping, and missing values were resolved through multiple imputations. To match 

the one that requires numerical input, categorical variables are transformed into a numerical format using one-hot 

encoding. New variables that provide a more profound understanding of customer behavior and claim patterns 

were developed through feature engineering. The calculated fields included average claim size, time since the last 

claim, and claim frequency per year, premium-to-loss ratio, payment consistency index, and other relevant metrics. 

These engineered features allow the model to learn more about customer risk, which is deeper than the surface 

level. 

Two complementary techniques for dimensionality reduction were employed (33). The redundant and weakly 

related attributes were removed using Correlation-Based Feature Selection (CFS), retaining the characteristics that 

had a significant influence on the target variable. Additionally, Principal Component Analysis (PCA) was used to 

create a compact representation of the data and assess its impact on model accuracy. Because it performed slightly 

better in the test set and was more interpretable, CFS was ultimately chosen as the final model. 

A summary of newly derived variables created during the feature engineering phase is provided in Table 4. 
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Table 4: Feature Engineering Summary 

New Feature Name Description 

Avg Claim Size Mean of claim amounts per policy 

Time Since Last Claim Days since last claim event 

Premium-to-Loss Ratio Annual premium divided by total losses 

Claim Frequency per Year Claims filed divided by policy years 

Payment Consistency Index Score based on payment timeliness 

 

6.3 Algorithm Selection 

Several supervised learning algorithms were tested to evaluate their ability to predict policyholder risk class. The 

algorithms used for training were Logistic Regression, Decision Tree, Random Forest, Gradient Boosting Machine 

(XGBoost), and a simple Artificial Neural Network. These algorithms were chosen due to our experience in insurance 

analytics and their future decision tree algorithms, which are available, for instance, in the Scikit-learn and XGBoost 

open libraries. The prepared dataset was used to train each algorithm with the selected features. A grid search was 

employed to optimize the models and determine the optimal hyper parameters (3). It entailed tweaking aspects 

such as the number of trees in Random Forest, the learning rate for boosting models, and the depth of decision 

trees. 

The diagram below illustrates the hierarchical structure of a decision tree model, consisting of a root node, decision 

nodes, and leaf nodes. This format helps in classifying policyholders by following decision paths based on their 

attributes. Models like Random Forest and Gradient Boosting are built using ensembles of such trees. 

 

Figure 6: Algorithms, Real-World Applications 
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6.4 Training and Validation 

An 80/20 ratio of training and validation sets were used to split the data. To avoid overfitting and obtain robust 

results, 10-fold cross-validation was performed on each model during training. This method involves dividing the 

dataset equally into 10 parts, training the model with nine parts, and testing the model with the remaining part. 

This is repeated 10 times to obtain the average performance across another sample. Accuracy, precision, recall, F1-

score, and the area under the receiver operating characteristic curve (AUC) were all used as model evaluation 

metrics. These metrics were selected to provide a scoring approach to tolerance, particularly in situations where 

that was unevenly distributed across risk classes. Analyzing precision and recall for each class can help identify, for 

example, a model that performs well only on low-risk cases but poorly on high-risk cases. The model that performed 

the best was the Random Forest classifier due to its highest accuracy and consistency across all metrics; therefore, 

it was selected for deployment (16). Logistic regression was highly interpretable but made slightly fewer predictions. 

While the models implemented with Gradient Boosting performed competitively (as evaluated on out-of-sample 

data), they required longer training times, which was not acceptable for real-time application scenarios. 

6.5 Tools and Technologies Used. 

Data was ingested, inspected, and transformed, for example, using Pandas and NumPy. 

python 

CopyEdit 

import pandas as pd 

import numpy as np 

 

# Load data from CSV 

df = pd.read_csv("insurance_claims.csv") 

 

# Preview structure 

print(df.info()) 

print(df.head()) 

 

Data Preprocessing 

Pandas and NumPy were used to handle missing values, create new features, and convert categorical variables. 

 

python 

CopyEdit 

# Fill in missing numerical data 

df['Claim_Amount'].fillna(df['Claim_Amount'].median(), inplace=True) 

 

# Encode categorical variables 
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df = pd.get_dummies(df, columns=['Policy_Type', 'Region'], drop_first=True) 

 

Standardization was performed using Scikit-learn: 

 

python 

CopyEdit 

from sklearn.preprocessing import StandardScaler 

 

num_features = ['Customer_Age', 'Vehicle_Value', 'Claim_Amount'] 

scaler = StandardScaler() 

df[num_features] = scaler.fit_transform(df[num_features]) 

 

Exploratory Analysis 

Matplotlib and Seaborn were used to visualize key relationships and support feature selection. 

 

python 

CopyEdit 

import seaborn as sns 

import matplotlib.pyplot as plt 

 

# Correlation heatmap 

plt.figure(figsize=(10, 6)) 

sns.heatmap(df.corr(), annot=True, cmap='coolwarm') 

plt.title("Feature Correlation Matrix") 

plt.show() 

python 

CopyEdit 

 

Modeling with XGBoost 

Model training and evaluation were performed using XGBoost and Scikit-learn: 

 

python 

CopyEdit 

from xgboost import XGBClassifier 
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from sklearn.model_selection import train_test_split 

from sklearn.metrics import accuracy_score, classification_report, roc_auc_score 

 

# Split dataset 

X = df.drop(['High_Risk'], axis=1) 

y = df['High_Risk'] 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 

 

# Train model 

model = XGBClassifier(use_label_encoder=False, eval_metric='logloss') 

model.fit(X_train, y_train) 

 

# Predict and evaluate 

y_pred = model.predict(X_test) 

print("Accuracy:", accuracy_score(y_test, y_pred)) 

print("AUC Score:", roc_auc_score(y_test, model.predict_proba(X_test)[:, 1])) 

print(classification_report(y_test, y_pred)) 

 

Modeling with XGBoost 

Model training and evaluation were performed using XGBoost and Scikit-learn: 

 

python 

CopyEdit 

from xgboost import XGBClassifier 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import accuracy_score, classification_report, roc_auc_score 

 

# Split dataset 

X = df.drop(['High_Risk'], axis=1) 

y = df['High_Risk'] 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 

 

# Train model 

model = XGBClassifier(use_label_encoder=False, eval_metric='logloss') 
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model.fit(X_train, y_train) 

 

# Predict and evaluate 

y_pred = model.predict(X_test) 

print("Accuracy:", accuracy_score(y_test, y_pred)) 

print("AUC Score:", roc_auc_score(y_test, model.predict_proba(X_test)[:, 1])) 

print(classification_report(y_test, y_pred)) 

 

Exporting Model Outputs 

Final outputs, including risk scores and model predictions, were exported to Excel and SQL Server for use in Power 
BI dashboards. 

python 

CopyEdit 

# Add predictions to DataFrame 

df_results = X_test.copy() 

df_results['Predicted_Risk'] = y_pred 

df_results.to_excel("model_results.xlsx", index=False) 

 

SQL Server connection: 

python 

CopyEdit 

import pyodbc 

 

# Connect and upload results 

conn = pyodbc.connect('DRIVER={SQL 
Server};SERVER=your_server;DATABASE=your_db;Trusted_Connection=yes;') 

cursor = conn.cursor() 

 

for index, row in df_results.iterrows(): 

    cursor.execute(""" 

        INSERT INTO Risk_Predictions (Policy_ID, Predicted_Risk) 

        VALUES (?, ?) 

        """, row['Policy_ID'], row['Predicted_Risk']) 

 

conn.commit() 
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conn.close() 

 

7. Experimental Results 

The results from the predictive modeling experiments are presented here. The tasks it covers are model results 

evaluation, comparison of variable algorithms, visualization of key insights, and reporting the results on the Power 

BI platform. 

7.1 Summary of model performance 

The cleaned and feature-engineered dataset was used to train and test multiple machine-learning algorithms to 

predict the risk class of policyholders. The overall performance was the highest for the RF classifier, with an average 

accuracy of 84%. It also achieved strong performance in terms of class-specific precision and recall scores, especially 

for high-risk cases, which are typically underrepresented in insurance datasets. Logistic Regression performed very 

well in terms of transparency and ease of explaining the output, achieving an overall accuracy of 78% (8). However, 

it was unable to thoroughly grasp the nonlinear interactions among the features. Random Forest showed slightly 

better performance in some of the precision-recall tradeoff experiments with Gradient Boosting Machines 

(especially with XGBoost). Still, it took longer to train and is less interpretable. The performance of the Decision 

Tree model was moderate and was mainly suitable for visualizing rule paths. The basic neural network yielded good 

results during training, but it over fitted under cross-validation, especially when the classes were imbalanced. 

As illustrated in the bar graph below, the Random Forest model achieved the highest accuracy (84%) among all 

evaluated algorithms, outperforming Logistic Regression, Decision Tree, XGBoost, and Neural Network models in 

the predictive classification of policyholder risk. 

 

Figure 7: Model Accuracy Comparison 
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7.2 Comparison of Key Metrics 

Standard classification metrics were used to evaluate these models. For the high-risk category, the Random Forest 

model had 82% precision, 80% recall, and 81% F1 score. The results indicate that the model identifies most high-

risk policyholders and minimizes false positives. Overall, the Random Forest demonstrated a strong classification 

capability, with an area under the receiver operating characteristic curve (AUC) of 0.91, indicating good 

performance. For the medium-risk group, XGBoost had slightly higher precision (0.8 vs. 0.77), but this was 

inconsistent across the folds. The AUC for the medium-risk group was 0.89. The AUC for Logistic Regression was 

0.85, providing more stable predictions; however, it consistently misclassified high-risk students as medium risk. 

The AUC of the Decision Tree was 0.82; it was shallow, thus easy to interpret, but was not suitable for scaling to the 

complexity of the dataset. These comparisons verify that ensemble models achieve significantly better performance 

on this structured insurance data than traditional models, such as LTDLs, for this type of data, especially when the 

goal is to forecast risk distribution among multiple classes. 

As shown in the Table below, Model Performance Comparison, the Random Forest model achieved the highest 

overall performance, with an AUC of 0.91 and strong precision and recall scores for the high-risk class. 

 
Table 5: Model Performance Comparison 

Model Accuracy (%) Precision (High-Risk) Recall (High-Risk) AUC 

Logistic Regression 78 75 70 0.85 

Decision Tree 74 72 68 0.82 

Random Forest 84 82 80 0.91 

XGBoost 83 80 78 0.89 

Neural Network 79 77 74 0.86 

 

7.3 Visualization of Results. 

The exploratory visualizations and model outputs were plotted to see how different features influence the risk 

classification (33). Feature importance plots from the Random Forest model revealed key variables, including but 

not limited to claim frequency, premium-to-loss ratio, payment delays, and time since the last claim, which had the 

highest predictive power. The pros had these features matched fundamental world underwriting criteria, so they 

felt confident that these models were working. The predicted classes were compared to the actual courses to form 

confusion matrices for each model, enabling an assessment of how well each model predicted the results. Random 

Forest — the matrix showed a high correct classification rate at all three risk levels. The most misclassifications 

occurred between medium and high-risk classes, which could be due to almost overlapping behavioral patterns in 

these groups. In addition to static plots, an interactive risk dashboard was developed using Power BI. With this 

dashboard, end-users can view real-time model outputs and drill down into policy-level predictions, as well as filter 

results by region, vehicle type, policy term, and other attributes. Then, one of the dashboard's sections summarized 

the model accuracy, and I explained the individual predictions using SHAP value approximations integrated through 

the exported summary tables. 
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As illustrated in the pie chart below, Claim Frequency emerged as the most significant predictor in the model, 

contributing 35% to the classification outcome. This was followed by Premium-to-Loss Ratio (25%), while Payment 

Delays and Time since Last Claim each contributed 20% to the model's decision-making process 

 

Figure 8: Feature Importance from Random Forest Model 

 

7.4 Integration into Business Reporting 

Once the model evaluation and testing phases were complete, the results were embedded into Power BI for 

operational use. Live scoring tables of policy-level risk scores were connected to the dashboard. Users (underwriters 

and analysts) were able to access the dashboard through a secure web interface, view individual customer risk 

profiles, and filter across key attributes, including coverage type, channel, and period. This generated a heat map 

of risk pattern distribution across geographies, bar charts illustrating claim trends by risk class, and policy details 

for flagged high-risk cases. Viewing these models allowed underwriting teams to fine-tune pricing or coverage limits 

to their expectations of future risk. The predictive model was embedded in a predictable, reliable, and user-friendly 

interface, removing it from the realm of a technical artifact and making it a usable business tool. The most important 

part of this process was to gain adoption and ensure that the model provided value beyond just technical 

experimentation. 

 
8. DISCUSSION AND BUSINESS IMPLICATIONS 

The results from experimental findings are then interpreted in a broader business context. It explains how the 

predictive model aligns with the P&C insurance operational goals and examines the advantages, drawbacks, and 

strategic opportunities of utilizing data-driven risk classification in real-world environments (31). 

A detailed overview of these use cases, along with the benefits and scalability potential across the organization, is 



AMERICAN ACADEMIC PUBLISHER 

 

 

  

https://www.academicpublishers.org/journals/index.php/ijns 20 

 

 

provided in the Table below: Strategic Impacts of Predictive Risk Classification Model. 

 
Table 6: Strategic Impacts of Predictive Risk Classification Model 

Business Area Use Case Benefits Scalability Potential 

Underwriting 
Real-time risk scoring, 

standardized decisions 

Faster approvals, reduced 

manual review, improved 

consistency 

High — applicable to all 

policy types 

Pricing 
Premium adjustments based 

on predicted risk 

Better loss ratios, competitive 

advantage, loyalty incentives 

Moderate to High — 

customizable across 

products 

Fraud Detection 
Early flagging of suspicious 

behavior 

Reduced fraudulent payouts, 

improved financial security 

High — extendable to 

claims, billing, and customer 

behavior 

Business 

Intelligence 

Interactive dashboards with 

historical and real-time views 

Enhanced decision-making 

speed, stakeholder 

accessibility 

High — via platforms like 

Power BI or Superset 

Marketing & 

Product Design 

Segmentation based on 

behavioral and risk profiles 

Personalized offerings, 

targeted campaigns 

Moderate — depends on 

feature integration 

Regulatory 

Compliance 

Explainable AI with traceable 

feature contributions 

Transparency, ethical AI 

practices, improved 

auditability 

High — necessary across all 

product and compliance 

lines 

Organizational 

Learning 

Feedback loop between data 

science and operational 

strategies 

Continuous improvement, 

data-driven culture 

High — supports enterprise-

wide analytics strategy 

 

8.1. Interpretation of Results 

The study's results confirm that predictive modeling, achieved through machine learning, can provide scalable and 

reliable solutions for classifying policyholders based on their risk. The Random Forest classifier was consistently the 

best at identifying high-risk profiles, which are usually the most important for business outcomes. Based on this 

performance, decision trees and ensemble methods are particularly well-suited for structured insurance datasets 

that integrate elements of both numerical and categorical fields across the dimensions of policy, customer, and 

claim. Claim frequency, time since the last claim, and loss ratio are found to be the most influential variables, 

consistent with known indicators commonly used in traditional underwriting (18). They validate the model and, in 

doing so, also provide new directions for data-driven workflows. Their use of engineered features, such as payment 

behavior patterns and policy renewal intervals, introduced additional layers of insight that were not uncovered by 

traditional approaches. 
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As illustrated in the bar graph above, Claim Frequency, Time since Last Claim, and Loss Ratio were the top three 

most influential variables in the model’s ability to classify policyholder risk. 

 

Figure 9: Most Influential Variables in Risk Classification 

 

8.2 Underwriting Operational Improvements 

The predictive model can utilize the reduced manual review time by underwriters and provide real-time insights 

during policy approval and renewal processes. Rather than individually approving each application without 

established risk standards, underwriters can view a standardized risk score based on thousands of historical records 

and interactive modeling. By enabling this type of capability, consistency and transparency can be introduced to 

underwriting decisions, allowing human expertise to manage exceptions. This is further enhanced by the dashboard, 

which integrates with Power BI to provide the output in an intuitively displayable format (15). Users can now quickly 

access risk classifications, view feature contributions, and see how things have historically unfolded. It reduces 

dependency on static reports and enhances the speed of decisions. In high-volume application environments, such 

a tool enables underwriters to focus on borderline or high-risk cases, thereby optimizing effort while improving 

overall portfolio quality. 

8.3 Improving Pricing and Fraud Detection Strategies 

The model also helps refine pricing strategies by accurately classifying customers into risk categories. Predicted risk 

scores can be used to adjust premiums, thereby improving loss ratios and enhancing competitive positioning. For 

instance, loyalty can be encouraged among low-risk customers through the offer of discounts. In contrast, high-risk 

customers may require additional verification and rate adjustments to mitigate the risk associated with those losses. 

The model also has applications in early fraud detection, underwriting, and pricing. Suppose cases are flagged as 
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high risk based on historical behavior patterns, such as a high frequency of claims, inconsistent payment habits, or 

rapid policy changes. In that case, they can be reopened for investigation. If this insight is incorporated into the 

claims processing tools or alert systems, the insurer can prevent unreasonable payouts and maintain financial 

health (26). 

8.4 Strategic value and scalability. 

The approach in this study can be scaled across insurance product lines (e.g., motor, home, and liability coverage). 

The model can be applied to other domains within the organization's data with minimal changes needed. It provides 

a basis for enterprise-wide Analytics strategies. Additionally, by harnessing the model's output into an embedded 

analytics platform, the organization establishes a feedback loop between data science and business operations. The 

dashboard can be used to drive product development, marketing campaigns, and agent training based on patterns 

of risk identified therein. Over time, the model will retrain on more data as additional information is accumulated, 

helping it adapt to changes in updates and dynamic behaviors. Explainable machine learning, in turn, enables 

regulatory compliance by promoting transparency in autonomous decisions. Increasingly important in an 

environment under scrutiny for data ethics and accountability, Business leaders can audit model outcomes and 

trace individual classifications back to specific (contributing) features. 

The illustration below highlights the interconnected roles of Artificial Intelligence, Machine Learning, and Finance. 

It shows how various AI subfields—like fraud detection, explainable AI, predictive analytics, and optimization 

algorithms—converge to support scalable, transparent, and enterprise-wide decision-making systems. 

 

Figure 10: Model-agnostic explainable artificial intelligence methods in finance 

 

9. Limitations and Future Work 

9.1 Dataset Constraints 

The key limitation of this study is that the dataset relies on training and validation of the models, which are not 
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subject-based (13). Data pulled from the Guidewire DataHub sandbox environment is very close to actual world 

P&C insurance data structures; however, it is still synthetic and anonymous. This leads to some real behavioral 

features and irregularities – such as interactions between agents, complex fraud behavior, or region-specific 

behavior – not being entirely captured. Since there are no variables such as agent notes, rich customer 

communication logs, and telematics, the model cannot accurately represent the operational complexity 

encountered in production systems. 

9.2 Minority Representation and Class Imbalance 

There were significantly fewer high-risk policyholders in the dataset compared to the total population, resulting in 

an uneven distribution of risk classes. Despite employing balancing techniques such as oversampling and class 

weighting, the model struggled to identify infrequent yet crucial events, including fraudulent claims and 

catastrophic losses. Such an imbalance can reduce the model’s generalization capability and introduce bias into the 

predictions. More advanced resampling methods, such as synthetic minority oversampling techniques (SMOTE), 

can be further explored for improved sensitivity to underrepresented classes. 

9.3 Explain ability and transparency gaps 

Feature importance plots were used to explain some aspects. Still, more robust tools, such as SHAP (Shapley 

Additive Explanations) or LIME (Local Interpretable Model-agnostic Explanations), were applied offline via exported 

summary statistics. The tools were not embedded directly in the dashboard interface, which precludes end users 

from seeing why risk scores were calculated in a particular way. In regulated industries where decisions must be 

justified, such as eligibility and pricing, real-time explanations of predictions are a necessity. In future iterations, 

explainable AI components will be integrated into the live dashboard to enhance transparency, compliance, and 

trust (29). 

9.4 Model Scalability and Maintenance 

The data structures and business rules underlying insurance operations continue to change as operations change. 

An effective predictive model will need to be maintained over time by making continuous updates to feature 

engineering scripts, retraining workflows, and integrating pipelines. Performing these tasks manually can be 

resource-intensive and prone to errors. For future development, automated pipelines for data validation, version-

controlled retraining, and scheduled updates to the dashboard interface should be built to ensure long-term model 

performance and usability. 

9.5 External Data Source Integration 

The area for future enhancement also includes infusing external datasets. Beyond merely incorporating internal 

insurance records, other data, such as weather forecasts, regional crime rates, credit history, and vehicle 

maintenance records, may also contain signals for assessing risk. As these datasets can improve model accuracy 

(particularly in areas like catastrophe modeling, localized risk pricing, and behavioral underwriting in delegation), 

they are attractive to modelers. 

9.6 Dynamic Risk Scoring in Real-Time 

The current model calculates static risk scores from past data at a single point in time (17). Risk profiles, however, 

are likely to evolve over the policy’s lifecycle as more claims are submitted, behaviors change, or policy conditions 

are modified. Using streaming data and event-driven architecture, a dynamic modeling approach can continuously 
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update risk scores in real-time real-time. A system of this kind would enable insurers to respond proactively to 

changes in customer risk and make informed decisions about coverage adjustments and alerts promptly. 

As shown in the figure below, real-time scoring depends on a layered infrastructure including data integration, 

processing pipelines, monitoring tools, and alert systems. This architecture supports continuous updates to 

policyholder risk profiles as new data is collected and processed. 

 

 

9.7 Deployment Potential across Products 

The framework developed in this study is architected and designed to support other insurance product lines, as well 

as property and casualty (P&C) insurance. Future work would test and validate the model across various domains, 

such as homeowners, cyber, or commercial auto insurance. With a shared Guidewire DataHub infrastructure and 

Power BI Visualization layer, predictive models can be deployed across various lines of business to maximize return 

on investment and standardize analytics practice enterprise-wide. 

 
10. Recommendations 

Based on the findings and limitations discussed in this study, several actionable recommendations are proposed to 

enhance the implementation and operational impact of predictive risk modeling in the Property and Casualty (P&C) 

insurance sector. 

Insurers need to prioritize upgrading their data infrastructure. Accurate and scalable predictive modeling relies on 

a unified and well-maintained data environment, such as Guidewire DataHub. A consistent, consistent and broader 

view of the data is ensured by consolidating data across policy, claims, billing, and customer systems. Data 

governance protocols must be established within an organization to maintain and enhance data quality and lineage 

while also ensuring regulatory compliance. Second, insurers are instructed to integrate the predictive modeling 

output into their operational workflows (20). Business intelligence platforms, such as Power BI, enable the 

embedding of model results, making them accessible to underwriters, analysts, and decision-makers. Real-time risk 

scores, policy insights, and other explanatory variables should be presented in customized dashboards tailored to 

user roles, allowing them to streamline and inform their decision-making process. Utilizing this integration reduces 
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technical reliance and fosters a data-driven culture within departments (24). 

Third, model explainability and user trust will be important. Understanding the reasons behind automated decisions 

in regulated environments is essential and valuable. SHAP or LIME tools will be deployed in real-time to dashboards, 

improving transparency and aiding in audits, customer communication, and internal reviews. These are the tools to 

configure for highlighting key drivers of each prediction in an easy-to-understand way. Fourth, future 

implementations should strive to integrate additional external data sources. The inclusion of third-party data (e.g., 

telematics, geographic risk index, economic indicators, and vehicle repair history) can expand the breadth and 

accuracy of the predictions. These may be particularly beneficial for identifying emerging risks or for developing 

highly localized pricing and claims strategies (9). 

Fifth, insurers should transition from static risk scoring of customers to ongoing, event-driven risk scoring that 

updates dynamically in real time. Throughout the real-time lifecycle, customer behavior, claim activity, or 

environmental factors may change, leading to a corresponding adjustment in risk profiles. If scores are updated 

continuously, one can take proactive actions, such as early intervention on high-risk accounts or a rapid response 

to unusual fraudulent activity. The architecture and modeling framework developed in this study should be 

expanded to other product lines. Standardizing modeling processes, data integration techniques, and dashboard 

deployment across homeowners, commercial auto, and cyber insurance products will improve the return on 

analytical investment and enhance operational efficiency, reducing development overhead and fast-tracking rollout 

timing (28). The lifecycle of predictive modeling should closely embody continuous improvement. These encompass 

setting up feedback loops to connect model performance with business outcomes, automating retraining cycles, 

and correlating model metrics with operational key performance indicators (KPIs). Over time, a predictive system 

remains relevant, reliable, and impactful only if its model accuracy, data drift, and user adoption are regularly 

reviewed. Adopting these recommendations will enable insurers to enhance their risk assessment capabilities, 

minimize wasted resources, and deliver greater value to their customers by making their insurance services more 

responsive and intelligent for all stakeholders. Predictive analytics will increasingly become an embedded capability 

for the types of decisions insurers make every day to contend in an increasingly competitive and data-driven 

insurance space. 

As the figure below illustrates, predictive analytics delivers multiple operational advantages in the insurance sector. 

 

Figure 11: future-of-predictive-analytics-in-the-insurance-sector 
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12. CONCLUSION 

Modern data platforms and machine learning techniques offer significant benefits for predictive risk modeling in 

the Property and Casualty (P&C) insurance sector. Insurers can classify policyholders by their risk levels using 

Guidewire DataHub for centralized data management and Power BI Embedded for real-time visualization, enabling 

them to underwrite and price more accurately and quickly detect fraud. The framework in this research 

comprehensively covers data preparation, feature engineering, algorithmic modeling, and operation deployment. 

Supervised machine learning techniques were employed to transform structured insurance data, which included 

customer profiles, policy history, and claim behavior, into actionable insights. In the model development process, 

priority was given not only to accuracy but also to business alignment and the interpretability of the resulting tools, 

which underwriters, analysts, and managers would use. 

Among the tested algorithms, the Random Forest classifier showed the best predictive performance, as measured 

across most evaluation metrics. Its strength lay in its ability to find complex, non-linear relationships in the data 

while still being interpretable through feature importance measures. Claim frequency, payment behavior, and 

historical loss ratio were shown to be central predictors of risk classification. Thus, these findings corroborate the 

value of behavioral and historical indicators in enhancing more comprehensive and responsive risk assessment 

models. The practical dimension of the solution involved integrating model results into interactive Power BI 

dashboards. Dynamic visualizations, such as individual and portfolio-level risk scores, claim trends, and policy 

segmentation, allowed users to explore and interact. The level of interactivity created allowed teams to make 

decisions more quickly, maintain consistency in underwriting evaluations, and provide more information to 

business stakeholders. The support for explainability was an additional contribution of the approach. More 

advanced interpretability tools, such as SHAP, were used separately during testing, but future improvements could 

include embedding real-time explanation layers in dashboards for total transparency. In regulated environments, 

which are increasingly expected to deliver accountability and justification for automated decisions, such 

enhancements are significant. 

During the process, several challenges arose. Anonymized and synthetic data was used, which was structurally 

correct yet distant from the real behavioral nuances. With a small portion of high-risk cases, there is a class 

imbalance, which could limit the model's ability to generalize in a production setting. Additionally, the model relied 

on internal data sources, which limited its understanding of external factors, such as environmental threats or 

socioeconomic influences. A valuable direction for further development is to address these limitations through 

broader data integration and improved feature engineering. Beyond the technical proof of concept, what is 

described as a means by which insurers can scale and operate a framework to modernize their core decision-making 

processes. As data-driven strategies grow in popularity in the insurance sector, the integration of predictive 

modeling, domain-specific data platforms, and embedded analytics is a timely and forward-thinking innovation. 

Moving forward, for insurers to proactively manage risk, optimize pricing, and deliver superior customer outcomes, 

they will need to leverage integrated solutions backed by intelligent and data-driven operations. 
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