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Abstract 
 

Electromagnetic Compatibility (EMC) testing is a critical step in the development and certification of electronic devices to 

ensure they function correctly in their intended electromagnetic environment without causing or being susceptible to 

unacceptable electromagnetic interference [1]. EMC tests often involve applying specific electromagnetic test signals and 

monitoring the device's response or measuring its emissions. These test signals, particularly those used for immunity testing 

(e.g., transient pulses, modulated sine waves), are inherently time-series data with complex temporal characteristics. 

Accurately predicting the behavior or required parameters of these test signals under various conditions or extrapolating 

limited measurements could significantly optimize testing procedures, reduce test time, and improve the efficiency of EMC 

compliance efforts [27]. Traditional signal processing techniques [7, 11, 12, 13, 14] may struggle with the non-linear and 

potentially non-stationary nature of some EMC phenomena and test signals [5, 6]. Deep learning, specifically Long Short-

Term Memory (LSTM) networks, has demonstrated exceptional capabilities in modeling and predicting complex sequential 

data [15, 16, 17, 18, 19]. This article proposes and outlines a methodology for predicting EMC test signal characteristics 

using LSTM networks. We discuss the conceptual framework for data acquisition, model architecture design, training, and 

evaluation, drawing upon principles from time-series analysis [5, 6], neural networks [2, 4, 10, 15, 16, 17, 18, 19], and signal 

processing [7, 11, 12, 13, 14]. The potential benefits include enhanced test efficiency, improved understanding of signal 

behavior, and the possibility of generating synthetic test data for simulation purposes [24]. 
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INTRODUCTION 
 

Electromagnetic Compatibility (EMC) is a fundamental aspect of electronic system design, ensuring that different devices and 

systems can coexist in the same electromagnetic environment without causing harmful interference to each other [1]. Achieving 

EMC involves managing both electromagnetic emissions (unintentional generation of electromagnetic energy) and 

electromagnetic immunity (the ability to withstand external electromagnetic disturbances) [1]. Regulatory bodies worldwide 

mandate EMC testing for a vast range of electronic products before they can be placed on the market. 

EMC testing encompasses various procedures, including conducted emissions and immunity tests, and radiated emissions and 

immunity tests. Many of these tests involve the generation and application of specific electromagnetic signals. For example, 

immunity tests might subject a device to transient pulses (e.g., electrostatic discharge, electrical fast transients, surges), voltage 

dips and interruptions, or radio-frequency electromagnetic fields that are often amplitude or frequency modulated [1]. The 

characteristics of these test signals, such as their amplitude, rise time, duration, frequency, and modulation parameters, are 

precisely defined by international standards. However, ensuring the accuracy and consistency of these signals during testing, 

especially when considering the interaction with the test setup and the device under test, can be complex. Furthermore, predicting 

how these signals might behave under slightly different test conditions or extrapolating limited measurement data could provide 

valuable insights for test planning and troubleshooting. 

Traditional signal processing techniques, including methods for band-limited signal extrapolation [7, 11, 12, 13, 14], time-

frequency analysis, and statistical modeling [6], have been applied to analyze various types of signals. However, EMC test 
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signals, particularly those encountered in real-world test environments, can exhibit non-linear behaviors or be influenced by 

complex interactions that are difficult to capture with linear or simple statistical models [5, 6]. The ability to accurately predict 

or model the non-linear dynamics of such signals is crucial for advanced EMC analysis and testing [2]. 

In recent years, deep learning has revolutionized many fields, including time-series analysis and prediction [2, 4, 5, 6, 8, 9, 10, 

11, 12, 13, 14, 15, 16, 17, 18, 19]. Recurrent Neural Networks (RNNs), and specifically Long Short-Term Memory (LSTM) 

networks, are particularly well-suited for processing sequential data because of their ability to learn and remember dependencies 

over long sequences [15]. LSTMs have shown success in diverse time-series prediction tasks, from natural language processing 

[15] and speech processing [15, 25] to fault diagnosis [16] and radar signal analysis [18, 19]. Their capacity to model complex, 

non-linear temporal patterns makes them a promising tool for analyzing and predicting EMC test signals. 

This article proposes a conceptual framework for developing an EMC test signal prediction method based on LSTM networks. 

We outline how LSTM can be applied to model the temporal characteristics of EMC test signals, discuss the necessary steps for 

data preparation and model training, and explore the potential benefits and challenges of this approach for enhancing EMC testing 

efficiency and understanding. 

 

METHODOLOGY 
The proposed methodology for predicting EMC test signals using LSTM networks involves several stages, from data acquisition 

and preprocessing to model design, training, and evaluation. The core idea is to train an LSTM model to learn the underlying 

temporal patterns of EMC test signals based on historical data, enabling it to predict future signal values or characteristics. 

1. Data Acquisition: The first step requires obtaining a dataset of EMC test signals. This data could be acquired through: 

o Experimental Measurements: Capturing the actual voltage or current waveforms of EMC test signals generated by test 

equipment (e.g., surge generators, ESD simulators, RF signal generators) under controlled conditions [1]. Measurements should 

be taken with appropriate high-bandwidth oscilloscopes or digitizers. Varying test parameters (e.g., voltage levels, pulse 

repetition rates, modulation frequencies) would generate a diverse dataset. 

o Simulated Data: Generating synthetic EMC test signal waveforms using established mathematical models or simulation 

tools [1]. While simulations provide clean data, they may not fully capture real-world imperfections or interactions with the test 

setup. 

o Hybrid Approach: Combining experimental measurements and simulated data to leverage the realism of the former and 

the control/scalability of the latter. 

The data should be collected as time series, representing the signal amplitude (voltage or current) over time. 

2. Data Preprocessing: Raw time-series data needs to be preprocessed to be suitable for LSTM training: 

o Normalization/Scaling: Scaling the signal amplitudes to a consistent range (e.g., [0, 1] or [-1, 1]) is crucial for optimal 

neural network performance [20, 21]. 

o Windowing: Time-series data is typically structured into input-output pairs for supervised learning. This involves 

creating "windows" of past signal data as input features to predict the signal value(s) in a future window. The size of the input 

and output windows are hyperparameters that need to be tuned. 

o Splitting: The dataset is split into training, validation, and testing sets to train the model, tune hyperparameters, and 

evaluate performance on unseen data. 

3. LSTM Model Architecture: A standard LSTM network architecture is proposed for this task [15]. 

o Input Layer: Receives the preprocessed time-series input window. The input shape will be (batch size, input window 

size, number of features), where the number of features is typically 1 for a single-channel signal. 

o LSTM Layers: One or more layers of LSTM units [15]. LSTM units contain internal gates (input, forget, output) and a 

cell state that allow them to selectively remember or forget information over time, making them effective at capturing long-term 

dependencies in sequences [15]. The number of LSTM layers and the number of units in each layer are hyperparameters. 

Bidirectional LSTMs (BiLSTMs) [18, 19], which process the sequence in both forward and backward directions, could also be 

explored to capture context from both past and future points in the input window. 

o Dense (Output) Layer: A fully connected layer that maps the output of the LSTM layers to the desired prediction output. 

For predicting the next signal value, this would be a single unit. For predicting a future sequence, it would have a number of 

units equal to the output window size. 

o Activation Functions: Standard activation functions like ReLU or tanh can be used within the network. 

4. Model Training: 

o Loss Function: A suitable loss function is chosen to quantify the difference between the model's predictions and the 

actual future signal values. Common choices for regression tasks include Mean Squared Error (MSE) or Mean Absolute Error 

(MAE) [25]. 

o Optimizer: An optimization algorithm (e.g., Adam, RMSprop) is used to update the model's weights during training to 

minimize the loss function. 

o Hyperparameter Tuning: Key hyperparameters, such as the number of LSTM layers, units per layer, learning rate, batch 

size, input/output window sizes, and the number of training epochs, need to be optimized [20, 21]. Techniques like Bayesian 

optimization [20, 21] or grid search can be employed. 
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o Training Process: The model is trained iteratively on the training data, with performance monitored on the validation 

set to prevent overfitting. 

5. Model Evaluation: 

The trained model's performance is evaluated on the unseen test set using appropriate metrics: 

o Prediction Accuracy: Metrics like MSE, MAE, Root Mean Squared Error (RMSE), or R-squared can quantify how 

closely the predicted signal matches the actual signal [25]. 

o Signal Fidelity: Visual comparison of predicted and actual signal waveforms is crucial to assess whether the model 

captures the shape, peaks, and transient features accurately. 

o Statistical Power: While Cohen's work [28] is in behavioral sciences, the concept of statistical power (the probability of 

correctly rejecting a false null hypothesis) is relevant in evaluating if observed differences in prediction accuracy between models 

are statistically significant. 

The proposed methodology leverages the strengths of LSTM networks in handling sequential data to learn the intricate temporal 

dynamics of EMC test signals. This approach is distinct from applying ML for condition monitoring [3, 4] or general time-series 

analysis [5, 6] by specifically targeting the prediction of standardized or measured EMC waveforms. 

Expected Outcomes and Advantages 

Applying the outlined LSTM-based methodology to EMC test signal prediction is expected to yield several beneficial outcomes 

and offer distinct advantages for EMC testing and analysis: 

1. Accurate Signal Prediction: The primary expected outcome is the ability of the trained LSTM model to accurately 

predict future values of EMC test signals based on a sequence of past observations. Given LSTMs' proven capability in capturing 

complex temporal patterns in various time series [15, 16, 17, 18, 19], it is anticipated that they can effectively model the 

characteristics of standard EMC waveforms, including transient pulses with sharp rise times and oscillatory components, as well 

as modulated signals. 

2. Improved Understanding of Signal Behavior: By training the model on data from EMC test equipment, the LSTM 

network implicitly learns the underlying signal generation process and its dynamics. Analysis of the model's performance under 

different conditions could potentially provide new insights into how test parameters influence the generated waveform, 

complementing traditional signal analysis methods [7, 11, 12, 13, 14]. 

3. Enhanced Test Efficiency: Accurate prediction capabilities could lead to more efficient EMC testing. For instance, if a 

partial measurement of a long-duration test signal is obtained, the LSTM could potentially extrapolate the remainder of the 

waveform [7, 11, 12, 13, 14], reducing the required measurement time. This could be particularly valuable for tests involving 

long-duration modulated signals or complex sequences. 

4. Virtual Test Scenarios and Simulation: A well-trained model could potentially be used to generate synthetic EMC test 

signal data [24] for simulating test scenarios or evaluating device behavior in a virtual environment. This could reduce the need 

for physical test equipment in early design phases. 

5. Optimization of Test Parameters: By predicting signal characteristics across a range of input parameters, the model 

could help identify optimal test settings or predict the outcome of tests before they are physically performed, leading to more 

streamlined test plans. 

6. Adaptation to Non-Standard Conditions: While EMC tests follow standards [1], real-world environments or specific 

test setups can introduce variations. An LSTM trained on measured signals could potentially predict the actual signal delivered 

to the device under test, accounting for setup-specific effects. 

The use of LSTM specifically addresses the sequential and potentially non-linear nature of EMC test signals, offering an 

advantage over methods less suited to such data [2, 5, 6]. While other neural networks like CNNs [10] or hybrid models [17] 

exist for time-series analysis, LSTMs are a strong baseline for sequences [15]. The interpretability of deep learning models is an 

ongoing research area [24], but the focus here is on the predictive power for the signal itself. 

 

DISCUSSION 
The conceptual framework for using LSTM networks to predict EMC test signals presents a promising avenue for enhancing the 

efficiency and effectiveness of EMC testing. The inherent capability of LSTMs to learn from and predict complex time-series 

data [15, 16, 17, 18, 19] aligns well with the temporal nature of EMC test waveforms. By moving towards predictive capabilities, 

the EMC testing process can potentially become more proactive, allowing for better resource allocation and faster identification 

of potential compliance issues. 

The ability to accurately predict signal characteristics could reduce the reliance on extensive physical measurements, particularly 

for repetitive tests or when extrapolating from limited data points [7, 11, 12, 13, 14]. This is especially relevant in today's fast-

paced product development cycles where reducing time-to-market is critical. Furthermore, generating realistic synthetic test 

signals based on a predictive model could provide valuable data for simulation and virtual validation, complementing physical 

testing [24]. 

However, several challenges must be addressed to successfully implement this methodology: 

1. Data Quality and Quantity: Training deep learning models like LSTMs requires large amounts of high-quality data [4, 

15]. Acquiring sufficiently diverse and accurate time-series data for various EMC test signals and test conditions can be resource-
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intensive. The data must capture the full range of variability and potential non-linearities present in real-world test signals. 

2. Model Generalization: Ensuring that the trained model generalizes well to unseen test conditions or even slightly 

different test equipment is crucial. Overfitting to the training data is a risk that needs to be mitigated through proper validation 

and regularization techniques [20, 21]. 

3. Computational Resources: Training LSTM networks, especially deep architectures, can require significant 

computational resources. While inference (making predictions) might be less demanding, deploying such models for real-time 

prediction in a test environment requires careful consideration of hardware capabilities. 

4. Defining Prediction Targets: The specific prediction task needs to be clearly defined. Is the goal to predict the entire 

future waveform, specific signal parameters (e.g., peak amplitude, duration), or the signal's behavior under a change in test setup? 

The complexity of the model and the required data will vary depending on the target. 

5. Uncertainty Quantification: Providing a measure of uncertainty alongside the prediction is important for practical 

applications [23]. Understanding the confidence level of a prediction is crucial for relying on it in a compliance testing context. 

6. Integration with Test Systems: Seamless integration of the prediction model with existing EMC test equipment and 

software is necessary for practical deployment. 

Future research should focus on implementing the proposed framework and validating its performance with extensive 

experimental data from various EMC test types and equipment. Comparative studies evaluating the LSTM approach against 

other time-series prediction methods, including traditional techniques [6, 7, 11, 12, 13, 14] and other machine learning models 

like CNNs [10] or Transformers, would provide valuable benchmarks. Exploring techniques for online learning or transfer 

learning could help the model adapt to new test environments or equipment without requiring complete retraining. Investigating 

the potential for using these predictive models to inform adaptive testing strategies, where the test sequence or parameters are 

adjusted based on real-time predictions, is another exciting avenue. Finally, considering the security implications of using 

predictive models, such as potential model inversion attacks [24], is important for ensuring the integrity of the testing process. 

The legal and safety aspects of AI-based systems [26] are also relevant if such models were to influence certification processes. 

 

CONCLUSION 
Electromagnetic Compatibility testing is vital for electronic product development, and the ability to accurately predict the 

characteristics of EMC test signals holds significant potential for improving test efficiency and understanding. This article has 

outlined a conceptual methodology for leveraging Long Short-Term Memory (LSTM) networks [15, 16, 17, 18, 19] to predict 

these complex time-series signals. By learning the temporal dynamics of EMC waveforms from historical data, an LSTM model 

can potentially provide accurate predictions, enabling faster testing, better test planning, and the possibility of generating 

synthetic data for simulation [24]. While challenges related to data acquisition, model generalization, and computational 

resources exist, the strengths of LSTMs in handling sequential and non-linear data make them a promising tool for this 

application. Further research and implementation are needed to validate this approach and realize its full potential in the field of 

electromagnetic compatibility. 
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