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ABSTRACT 

Many edge and embedded platforms now rely on Large Language Models (LLMs) to efficiently handle natural 

language processing with just basic tools. Due to inference running slowly, limits on hardware, and making sacrifices 

between accuracy and efficiency, performing in real time is still a problem. This research analyzes firmware 

improvements that address these constraints, with the main goal of improving latency without any loss in the 

model's accuracy. This study put together a structure that brings together specific firmware actions, scheduled 

accesses to memory, and instructions that depend on the microarchitecture. We use 4-bit and 8-bit operations, 

predict memory accesses, and choose a schedule tuned for the ARM NEON and x86 AVX hardware. For confirmation, 

a special HIL framework processes tests in real time using a fault injection system for memory, accuracy, and latency 

tracking. We observe that our approach achieves a major improvement in time and energy use while maintaining 

over 95% of the original model’s performance. This work provides useful suggestions for developers and system 

architects using LLMs in applications that require fast responses. 
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1. Introduction 

The explosion of Large Language Models (LLMs) has revolutionized the field of artificial intelligence applications by 

showcasing record-breaking performance in natural language understanding, generation, and reasoning. 

Nevertheless, the implementation of these advanced models on memory-scarce edge and embedded systems poses 

severe technical problems that call for imaginative optimization techniques. The intrinsic computational complexity 

of transformer-based models and their huge memory footprints impose tremendous obstacles to achieving real-

time inference on embedded platforms. 

Recent advances in the field have placed increasing emphasis on the essential role that latency optimization plays 

in LLM deployment. As described in modern work, the proportion of computational time spent by attention 

mechanisms in LLM inference is highly context- dependent, with a range from below 20% in brief contexts to over 

50% in lengthy contexts of thousands of tokens. Such variation posits the need for adaptive optimization techniques 

that can vary dynamically in response to varying operational conditions. 

The shift from edge-based to edge-based inference is a paradigm shift that presents many benefits, such as lower 

network dependence, better protection of privacy, and lower response latency in real-time applications. 
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Nonetheless, this shift calls for the reevaluation of optimization strategies on a fundamental level, from 

conventional software-level optimization to involve more profound firmware-level interventions that can push the 

efficiency of hardware utilization to the maximum. 

The relevance of this study is heightened by industry forecasts that the edge inference Application Specific 

Integrated Circuits (ASIC) market will hit $4.3 billion by 2024, including embedded architectures with AI chipsets 

integrated, discrete ASICs, and hardware accelerators. This growth pattern is a testament to the escalating need for 

optimized edge AI solutions and attests to the significance of creating strong optimization frameworks for 

embedded LLM deployment. 

2. LITERATURE REVIEW AND BACKGROUND 

2.1 Current State of LLM Optimization 

The domain of LLM optimization has seen tremendous advancements, especially in coping with the twin challenges 

of computational efficiency and preserving model. Classic optimization techniques have focused mostly on 

algorithmic optimization, such as model pruning, knowledge distillation, and some type of quantization [1]. Such 

software-centric methods, however, do not make use of the strengths of underlying hardware platforms to their full 

potential, especially in applications of embedded systems where resource constraints are most significant. 

Low-bit quantization technologies have recently made great strides in opening efficient LLM use on hardware-

limited edge devices [2]. Microsoft Research has pinpointed breakthroughs like T-MAC, Ladder, and LUT Tensor 

Core technologies to achieve enhanced computational efficiency with greater hardware compatibility. These 

breakthroughs mark a vital step toward narrowing the gap between model complexity and hardware capabilities 

[3]. 

2.2 Embedded Systems and Edge Computing Challenges 

The use of LLMs on embedded systems presents novel challenges that set it apart from its more conventional cloud-

based counterparts. The power consumption in edge computing must be very limited, memory is scarce, 

processing power is low, and the system requires quick or nearly instant ways to respond [4]. They require 

optimization that extends past software-level methods to include methods designed for hardware. 

The wide range of embedded hardware designs introduces another level of difficulty in optimization. Every type of 

microarchitecture is different in terms of performance, instructions, and memory setup and thus requires special 

optimization solutions for every hardware setup [5]. As a result, we require flexible optimization tools that can 

address various hardware types and still yield similar output. 

2.3 Firmware-Level Optimization Opportunities 

Optimizing for firmware in LLM deployment is not yet well established. Instead of working with system interfaces, 

firmware-level optimizations can edit elements in hardware, regulate memory access, and implement novel 

instruction sequences to process special workloads [6]. 

Some important things firms can do in the contemporary world are to use smart caches to lower the latency for 

memory access, arrange instructions for quick pipelining, and adjust the data path settings to make tasks less 

computationally intensive [7]. For LLM workloads, these optimizations can make a bigger difference, since LLMs 

tend to repeat the same math operations, memory operations, and memory access, which firmware can benefit 

from. 
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3. PROPOSED OPTIMIZATION FRAMEWORK 

The proposed optimization framework follows a sequential process, as shown in the diagram below, systematically 

enhancing LLM inference through firmware-level improvements. Each stage builds on the previous, targeting 

computational efficiency, memory management, and hardware acceleration to maximize overall system 

performance.  

 

Figure 1: Firmware-Level Optimization as a Sequential Process for LLM Inference 

 

3.1 Multi-Tiered Architecture 

The structured framework we have created brings optimization opportunities from various systems together and 

sees to it that they are optimized at the same time [8]. This strategy depends on linked improvements across all 

parts of the system, starting with the hardware and ending with advanced approaches to optimize algorithms. 

To optimize, the architecture uses the Hardware Abstraction Layer (HAL) level, Memory Management level and 

Computational Optimization level [9] Each step addresses selected parts of the inference process while coordinating 

with other steps to support better system performance. 

3.2 Quantization-Aware Firmware Routines 

Quantization has proven to be a reliable way to decrease large language model (LLM) computer use, keeping the model 

precise. Low-precision math in compilers is reduced by the framework using quantization-aware firmware 

operations [10]. Programming techniques in quantization- aware firmware include using relevant instructions and 

designing their data routes to ensure computations are as fast and accurate as possible. 

Various precision options are available with these routines: 8-bit integer, 4-bit integer, and mixed precision. With 

dynamic precision adaptation, the system can automate the choice of quantization levels to balance performance, 
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quality, and model size [11]. 

Weight compressions use asymmetric quantization; memory usage is cut using activation quantization, and special 

attention to optimization is given through gradient quantization. Using these methods together allows the design 

to run fast and still stand up to testing with decent accuracy [12]. 

3.3 Scheduled Memory Access Optimization 

In devices with limited memory, memory access patterns are a major reason LLM inference is slow. Our design 

includes a method of arranging memory access to predict data demands, which speeds up data transfers and 

increases throughput [13]. 

The system uses algorithms to look at how the system uses layers and predict what data will be needed next, so it is 

brought in before it is used. This brings down the number of memory stall cycles and makes the entire system more 

efficient in every way. The system supports ways of changing the amount of memory allocated which matches the 

needs of the model and the computing hardware at any given time [14]. 

 

 

 

Figure 2: Memory Access Optimization Framework for LLM Inference 

 

Optimizing cache is a major aspect of the memory access optimization framework. Within the framework, adaptive 

policies are applied for caching, so the main model parameters are held in the cache while less frequent items are 

removed or evicted. As these architectures work, these policies have been tuned and provide a significant cache hit 

rate boost [15]. 

3.4 Microarchitecture-Specific Instruction Sets 

Different embedded processors feature assorted instruction sets and levels of performance. To address this 

inconsistency, our system benefits from architecture-specific enhancement to instructions that enhance the 

performance of target devices without hindering portability to other hardware configurations. 

The framework executes matrix computations encountered in transformer layers by using dedicated NEON 

sequences on ARM processors [16]. With simple instruction code and minimal register load, these sequences 

achieve parallel processing using the NEON engine. With x86-based embedded platforms, the framework uses 

Advanced Vector Extensions (AVX) and Streaming SIMD Extensions (SSE) instructions to make vector computations 

faster and reduce how much time they require. 
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Such algorithms are used to design the best way to send instructions into the pipeline so that it is full, and stalls are 

minimized [17]. They use facts about microarchitecture, including how deep the pipelines are, how many execution 

units are accessible, and how they deal with dependencies, to develop optimized instruction streams for LLM 

computational kernels. 

 
Table 1: Firmware-Level Optimization Strategies for LLM Inference 

 

Optimization Layer Technique Description Target Hardware 

Quantization-Aware 

Firmware 

4-bit, 8-bit, mixed- 

precision operations 

Reduces compute load and 

memory usage while maintaining 

acceptable accuracy 

General Embedded 

Systems 

Scheduled Memory 

Access 

Predictive data 

prefetching, cache 

policies 

Speeds up memory access by 

anticipating layer needs and 

optimizing cache usage 

Memory- Constrained 

Devices 

Microarchitecture- Specific 

Code 

NEON (ARM), AVX/SSE  

(x86) 

sequences 

Executes matrix 

Operations using architecture-

specific instruction sets 

ARM NEON, x86 AVX 

Adaptive Precision Dynamic quantization 

level selection 

Automatically selects precision to 

balance performance and quality 

All Configurations 

Weight & Gradient 

Quantization 

Asymmetric and 

activation-specific 

quantization 

Further reduces memory without

 significantly 

affecting accuracy 

Transformer- Based 

Models 

 

This table outlines key firmware-level optimization techniques that enhance LLM inference on embedded systems. It 

highlights strategies across quantization, memory access, and hardware- specific instruction sets. These 

optimizations reduce latency, improve efficiency, and maintain accuracy, enabling high-performance AI applications 

on low-power devices through deeper integration with hardware capabilities [19]. 

 

4. TESTING AND VALIDATION FRAMEWORK 

4.1 Hardware-in-the-Loop Testing Architecture 

Testing must be strong enough to ensure firmware optimizations perform reliably and maintain good functioning 

[18]. Using an advanced HIL system is a real-time testing technique where actual hardware components interact 
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with simulated environments. It's used to validate embedded systems, firmware, or control algorithms under 

realistic scenarios without deploying the full physical system. The system models the environment (e.g., sensors, 

actuators, physical dynamics) in real-time using software. The simulated model sends inputs to the hardware; 

responses are measured to assess performance, stability, and optimization efficiency. Metrics like latency, power 

usage, and error handling are recorded and analysed. 

The test system runs automated suites that challenge the LLM to work on different input lengths, different settings 

and with varied resource access. The real-time system monitors many aspects, including the time taken by 

inferences, how much RAM and power is being used and how well accuracy is maintained over multiple setup 

optimizations. 

4.2 Continuous Integration Pipeline 

Because firmware optimization can change over time, it’s necessary to keep checking that it does not cause any 

problems or reduce performance as conditions vary [2]. 

 

Figure 3: Firmware Change Triggered CI Optimization Framework 

 

The framework is designed so that any changes to the firmware automatically trigger the continuous integration 

process, which validates the applied optimization methods. This means that the system continuously monitors 

firmware updates, ensuring that any modification—whether it's a minor patch or a major overhaul—immediately 

activates a pipeline for integration testing. The continuous integration (CI) mechanism not only compiles and builds 

the updated firmware but also runs a suite of automated tests to check for correctness, performance, and stability. 

As a result, developers receive instant feedback on whether the optimizations they applied are effective or 

introduce new issues. 

Performance benchmarking, checking of features and cross-platform compatibility are all carried out automatically 

in the pipeline. Using version control systems with optimization allows you to observe the success of optimization 

changes over a period and restore changes when needed [3]. 

4.3 Performance Metrics and Evaluation Criteria 

Having precise metrics is required to judge how firmware optimizations affect performance and what side effects 

they have. The criteria we use for our system involve cutting inference time, boosting memory, cutting energy costs 

and already-accurate models. 

 

Table 2: Evaluation Metrics for Optimization Performance 

Metric Description Purpose 

Firmware 
Changes 

 
CI Process 
Triggered 

Optimization 
Validation 
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Time to First Token 

(TTFT) 

Duration to generate the first output 

token 

Measures latency 

improvements 

Token Generation 

Speed 

Rate at which model generates 

subsequent tokens 

Reflects throughput 

enhancements 

Cache Hit Ratio Percentage of cache accesses that are 

successful 

Indicates efficiency of 

memory optimization 

Memory Bandwidth 

Utilization 

Amount of memory transferred per unit 

time 

Assesses memory access 

efficiency 

Energy per 

Inference 

Power consumed per inference 

operation 

Evaluates energy efficiency 

Accuracy Retention (%) Accuracy retained post-optimization 

(compared to original model) 

Ensures quality is preserved 

(>95% in study) 

 

Relevant metrics for compute performance checks involve the time it takes to obtain the first token (TTFT), token 

generation speed, memory bandwidth use, hit ratio of caches and energy needed each time an inference operation 

is done [4]. They assess the overall impact of optimization and assist decision-making over different optimization 

challenges. 

5. IMPLEMENTATION CONSIDERATIONS AND PRACTICAL GUIDANCE 

5.1 Platform-Specific Adaptations 

Firmware optimizations are successful by closely considering the features and limits of the target platform. In 

embedded systems, capabilities vary in their processing speed, how much memory is available which instructions 

can be used and the range of peripheral interfaces. Our approach provides suggestions that let developers adjust the 

optimization method based on the hardware they are using. In response to constrained memory conditions, the 

framework employs efficient memory organization techniques and runs lightweight computational kernels. To take 

advantage of the processing power in stronger embedded systems, the framework makes use of powerful 

instruction types and supports parallelism between computing units [17]. 

5.2 Development Tools and Utilities 

For firmware optimization to be successful, specialized tools are needed that make optimization possible without 

making development slower. Our system includes advanced tools such as performance profilers, change validation 

frameworks for development, including tools for identifying slowdowns, validating changes and checking how well 

optimization works. 
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Figure 4: Optimization Toolchain for Efficient Firmware Development 

Because of such tools, developers can use safe optimizations without needing to write in assembly or learn all the 

necessary microarchitecture details [7]. Optimization tools translate the main requirements into working firmware 

which significantly saves time and effort in development.  

5.3  Integration with Existing Development Workflows 

Firmware optimization should easily connect to the present tools and processes used in development [8]. The 

system provides integration support for common embedded development environments by connecting with 

standard build systems, debuggers, and deployment packages. 

 

Figure 5: Integration of Firmware Optimization with Development Toolchains 

Using version control makes it simple to track and compare how optimization approaches work over the months. 

Because of continuous integration, new optimizations can be tested and released directly without interrupting the 

development team’s job. 
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6.1 Emerging Hardware Architectures 

Because embedded hardware moves fast, finding ways to optimize firmware can be challenging as well as promising. 

Similar to neuromorphic and quantum processors, AI accelerators provide an opportunity to make LLMs better than 

those built using the traditional von Neumann architecture [10]. 

Future research will focus on learning about optimizing these new architectures and making adaptive frameworks 

that use hardware capabilities automatically. Simply using machine learning for picking optimization approaches 

could be a promising future research idea for self- adjusting optimization systems [11]. 

6.2 Advanced Optimization Techniques 

LLM optimization is advancing rapidly and from time to time, new approaches and techniques appear [12]. It is 

important to study changing optimization methods, join multiple pinpoint precisions into one model and produce 

memory compression algorithms only for transformer architectures. 

Adopting hardware-software co-design techniques provides another chance to make the optimization of firmware 

more efficient [13]. If engineering teams make optimization possible in hardware design, they might achieve greater 

gains through their hardware-firmware strategy. 

7. Conclusion 

This research introduces a thorough design for firmware-level optimization of LLM inference in embedded systems 

to solve issues of both faster performance and high accuracy with less computing power. Performance is enhanced 

using the multi-level optimization approach by harmonizing actions at hardware, system and algorithm levels. To 

improve efficiency without affecting model quality, the system uses quantization-aware firmware, schedules how 

memory is accessed optimally and designs instruction sets that fit with the microarchitecture. Checkingand 

guaranteeing that results of optimization are achieved while both reliability and functionality remain intact is the 

role of a proper testing and validation method. 

The study supports embedded AI developers, ML engineers and system architects with strategies they can apply 

right away, helping them integrate directly and effectively with the development process on different platforms. 

With increasing demand for AI at the edge, the importance of competent optimization techniques will escalate. 

Optimization at the firmware level is a key but currently unexplored area in LLM deployment, offering performance 

gains that were previously considered impossible through deep hardware-firmware integration. This study sets the 

foundation for future optimization methods and new emerging hardware structures to make edge AI more efficient. 

Future development will extend the framework to accommodate a variety of hardware structures, research 

dynamic optimization approaches, and create sophisticated testing processes. The overall goal is to make it possible 

for the broad adoption of complex LLM technologies in embedded devices, making advanced AI technology 

accessible across many applications. 

 References 

1. NVIDIA. Mastering LLM Techniques: Inference Optimization. (2023, November 17). NVIDIA Technical Blog. 

https://developer.nvidia.com/blog/mastering-llm-techniques-inference-optimization/ [Accessed on 

24/06/2025]. 

2. Kumar, A. (2024, September 4). How to Reduce the Latency of a LLM Application? - Aidetic. Medium; Aidetic. 

https://blog.aidetic.in/how-to-reduce-the-latency-of-a-llm-application-c84e52eaff9b [Accessed on 

24/06/2025]. 



 

AMERICAN ACADEMIC PUBLISHER 
 

                                

  

https://www.academicpublishers.org/journals/index.php/ijvsli 35 

 

3. LucaStamatescu. (2024, May 14). The LLM Latency Guidebook: Optimizing Response Times for GenAI 

Applications. TECHCOMMUNITY.MICROSOFT.COM. https://techcommunity.microsoft.com/blog/azure-ai-

services-blog/the-llm-latency-guidebook-optimizing-response-times-for-genai-applications/4131994 

[Accessed on 24/06/2025]. 

4. Jain, S. (2024, December 18). Why do LLMs have latency ? - Sulbha Jain - Medium. Medium. 

https://medium.com/@sulbha.jindal/why-do-llms-have-latency-296867583fd2 [Accessed on 24/06/2025]. 

5. Filippo, C., Vito, G., Irene, S., Simone, B., & Gualtiero, F. (2024). Future applications of generative large 

language models: A data-driven case study on ChatGPT. Technovation, 133, 103002–103002. 

https://doi.org/10.1016/j.technovation.2024.103002 [Accessed on 24/06/2025]. 

6. Son, M., Won, Y.-J., & Lee, S. (2025). Optimizing Large Language Models: A Deep Dive into Effective Prompt 

Engineering Techniques. Applied Sciences, 15(3), 1430. https://doi.org/10.3390/app15031430 [Accessed on 

24/06/2025]. 

7. Huang, S., Yang, K., Qi, S., & Wang, R. (2024). When large language model meets optimization. Swarm and 

Evolutionary Computation, 90, 101663–101663. https://doi.org/10.1016/j.swevo.2024.101663 [Accessed on 

24/06/2025]. 

8. Pankaj. (2024, January 13). Optimizing LLMs for Your Use Cases: A Developer’s Guide. Medium.

 https://medium.com/@pankaj_pandey/optimizing-llms-for-your-use-cases-a-developers-guide-

4fa2d8b43d02 [Accessed on 24/06/2025]. Aman, Y. (2025, February 14).  

9. Aman, Y. (2025, February 14). LLM Model Optimisation Techniques and Frameworks - Yugank.Aman - Medium. 

Medium. https://medium.com/@yugank.aman/llm-model-optimization-techniques-and-frameworks-

e21d57744ca1 [Accessed on 24/06/2025]. 

10. Zheng, Y., Chen, Y., Qian, B., Shi, X., Shu, Y., & Chen, J. (2025). A Review on Edge Large Language Models: Design, 

Execution, and Applications. ACM Computing Surveys. https://doi.org/10.1145/3719664 [Accessed on 

24/06/2025]. 

11. Naminas, K. (2024, December 11). LLM Inference: Techniques for Optimized Deployment. Labelyourdata.com;  

Label  Your  Data.  https://labelyourdata.com/articles/llm-inference [Accessed on 24/06/2025]. 

12. Sivakumar, S. (2024). Performance Optimization of Large Language Models (LLMs) in Web Applications. 

International Journal of Advanced Scientific Research, 8(1), 1077–1096. 

https://www.researchgate.net/publication/386342544_Performance_Optimization_of_Large_ 

Language_Models_LLMs_in_Web_Applications [Accessed on 24/06/2025]. 

13. Shahzad, T., Mazhar, T., Tariq, M. U., Ahmad, W., Khmaies Ouahada, & Habib Hamam. (2025). A comprehensive 

review of large language models: issues and solutions in learning environments. Discover Sustainability, 6(1). 

https://doi.org/10.1007/s43621-025-00815-8 [Accessed on 24/06/2025]. 

14. Stöffelbauer, A. (2023, October 24). How Large Language Models Work. Data Science at Microsoft; Medium. 

https://medium.com/data-science-at-microsoft/how-large-language-models-work-91c362f5b78f [Accessed 

on 24/06/2025]. 

15. Naveed, H., Ullah Khan, A., Qiu, S., Saqib, M., Anwar, S., Usman, M., Akhtar, N., Barnes, N., & Mian, A. (2023). A 

Comprehensive Overview of Large Language Models. http://arxiv.org/pdf/2307.06435 [Accessed on 

24/06/2025]. 

16. IBM. (2023, November 2). What are large language models (LLMs)? Ibm.com; IBM. 

https://medium.com/%40sulbha.jindal/why-do-llms-have-latency-296867583fd2
https://medium.com/%40pankaj_pandey/optimizing-llms-for-your-use-cases-a-
https://medium.com/%40yugank.aman/llm-model-
http://www.researchgate.net/publication/386342544_Performance_Optimization_of_Large_
http://arxiv.org/pdf/2307.06435


 

AMERICAN ACADEMIC PUBLISHER 
 

                                

  

https://www.academicpublishers.org/journals/index.php/ijvsli 36 

 

https://www.ibm.com/think/topics/large-language-models [Accessed on 24/06/2025]. 

17. Ali, A., & Ghanem, M. C. (2025). Beyond Detection: Large Language Models and Next- Generation 

Cybersecurity. SHIFRA, 2025, 81–97. https://doi.org/10.70470/shifra/2025/005 [Accessed on 24/06/2025]. 

Ghosh, B. (2024, June 3). Prompt Optimization, Reduce LLM Costs and Latency - Bijit Ghosh - Medium. Medium. 

https://medium.com/@bijit211987/prompt-optimization-reduce-llm-costs-and-latency-a4c4ad52fb59 

[Accessed on 24/06/2025]. 

18. Ghosh, B. (2024, June 3). Prompt Optimization, Reduce LLM Costs and Latency - Bijit Ghosh - Medium. Medium. 

https://medium.com/@bijit211987/prompt-optimization-reduce-llm-costs-and-latency-a4c4ad52fb59 

[Accessed on 24/06/2025]. 

19. Y. Bian, Y. Song, G. Ma, R. Zhu, and Z. Cai, “DroidRetriever: An Autonomous Navigation and Information 

Integration System Facilitating Mobile Sensemaking,” arXiv.org, 2025. https://arxiv.org/abs/2505.03364 

(accessed Jun. 25, 2025).  

http://www.ibm.com/think/topics/large-language-models
https://medium.com/%40bijit211987/prompt-optimization-reduce-
https://medium.com/%40bijit211987/prompt-optimization-reduce-

