

AMERICAN ACADEMIC PUBLISHER

https://www.academicpublishers.org/journals/index.php/ijvsli 26

INTERNATIONAL JOURNAL OF SIGNAL PROCESSING, EMBEDDED SYSTEMS AND VLSI DESIGN
(ISSN: 2693-3861)

Volume 05, Issue 02, 2025, pages 26-36
Published Date: - 21-07-2025
Doi: -https://doi.org/10.55640/ijvsli-05-02-02

Reducing Latency and Enhancing Accuracy in LLM Inference through
Firmware-Level Optimization

 Reena Chandra
Tools and Automation Engineer, Amazon, CA, USA

ABSTRACT

Many edge and embedded platforms now rely on Large Language Models (LLMs) to efficiently handle natural

language processing with just basic tools. Due to inference running slowly, limits on hardware, and making sacrifices

between accuracy and efficiency, performing in real time is still a problem. This research analyzes firmware

improvements that address these constraints, with the main goal of improving latency without any loss in the

model's accuracy. This study put together a structure that brings together specific firmware actions, scheduled

accesses to memory, and instructions that depend on the microarchitecture. We use 4-bit and 8-bit operations,

predict memory accesses, and choose a schedule tuned for the ARM NEON and x86 AVX hardware. For confirmation,

a special HIL framework processes tests in real time using a fault injection system for memory, accuracy, and latency

tracking. We observe that our approach achieves a major improvement in time and energy use while maintaining

over 95% of the original model’s performance. This work provides useful suggestions for developers and system

architects using LLMs in applications that require fast responses.

KEYWORDS

Large Language Models (LLMs), Firmware Optimization, Inference, Latency, Accuracy, Efficiency, Edge Computing,

Quantization, Hardware-in-the-Loop (HIL) Testing, Embedded Systems

1. Introduction

The explosion of Large Language Models (LLMs) has revolutionized the field of artificial intelligence applications by

showcasing record-breaking performance in natural language understanding, generation, and reasoning.

Nevertheless, the implementation of these advanced models on memory-scarce edge and embedded systems poses

severe technical problems that call for imaginative optimization techniques. The intrinsic computational complexity

of transformer-based models and their huge memory footprints impose tremendous obstacles to achieving real-

time inference on embedded platforms.

Recent advances in the field have placed increasing emphasis on the essential role that latency optimization plays

in LLM deployment. As described in modern work, the proportion of computational time spent by attention

mechanisms in LLM inference is highly context- dependent, with a range from below 20% in brief contexts to over

50% in lengthy contexts of thousands of tokens. Such variation posits the need for adaptive optimization techniques

that can vary dynamically in response to varying operational conditions.

The shift from edge-based to edge-based inference is a paradigm shift that presents many benefits, such as lower

network dependence, better protection of privacy, and lower response latency in real-time applications.

https://doi.org/10.55640/ijvsli-05-02-02
https://orcid.org/0009-0001-8061-1084

AMERICAN ACADEMIC PUBLISHER

https://www.academicpublishers.org/journals/index.php/ijvsli 27

Nonetheless, this shift calls for the reevaluation of optimization strategies on a fundamental level, from

conventional software-level optimization to involve more profound firmware-level interventions that can push the

efficiency of hardware utilization to the maximum.

The relevance of this study is heightened by industry forecasts that the edge inference Application Specific

Integrated Circuits (ASIC) market will hit $4.3 billion by 2024, including embedded architectures with AI chipsets

integrated, discrete ASICs, and hardware accelerators. This growth pattern is a testament to the escalating need for

optimized edge AI solutions and attests to the significance of creating strong optimization frameworks for

embedded LLM deployment.

2. LITERATURE REVIEW AND BACKGROUND

2.1 Current State of LLM Optimization

The domain of LLM optimization has seen tremendous advancements, especially in coping with the twin challenges

of computational efficiency and preserving model. Classic optimization techniques have focused mostly on

algorithmic optimization, such as model pruning, knowledge distillation, and some type of quantization [1]. Such

software-centric methods, however, do not make use of the strengths of underlying hardware platforms to their full

potential, especially in applications of embedded systems where resource constraints are most significant.

Low-bit quantization technologies have recently made great strides in opening efficient LLM use on hardware-

limited edge devices [2]. Microsoft Research has pinpointed breakthroughs like T-MAC, Ladder, and LUT Tensor

Core technologies to achieve enhanced computational efficiency with greater hardware compatibility. These

breakthroughs mark a vital step toward narrowing the gap between model complexity and hardware capabilities

[3].

2.2 Embedded Systems and Edge Computing Challenges

The use of LLMs on embedded systems presents novel challenges that set it apart from its more conventional cloud-

based counterparts. The power consumption in edge computing must be very limited, memory is scarce,

processing power is low, and the system requires quick or nearly instant ways to respond [4]. They require

optimization that extends past software-level methods to include methods designed for hardware.

The wide range of embedded hardware designs introduces another level of difficulty in optimization. Every type of

microarchitecture is different in terms of performance, instructions, and memory setup and thus requires special

optimization solutions for every hardware setup [5]. As a result, we require flexible optimization tools that can

address various hardware types and still yield similar output.

2.3 Firmware-Level Optimization Opportunities

Optimizing for firmware in LLM deployment is not yet well established. Instead of working with system interfaces,

firmware-level optimizations can edit elements in hardware, regulate memory access, and implement novel

instruction sequences to process special workloads [6].

Some important things firms can do in the contemporary world are to use smart caches to lower the latency for

memory access, arrange instructions for quick pipelining, and adjust the data path settings to make tasks less

computationally intensive [7]. For LLM workloads, these optimizations can make a bigger difference, since LLMs

tend to repeat the same math operations, memory operations, and memory access, which firmware can benefit

from.

AMERICAN ACADEMIC PUBLISHER

https://www.academicpublishers.org/journals/index.php/ijvsli 28

3. PROPOSED OPTIMIZATION FRAMEWORK

The proposed optimization framework follows a sequential process, as shown in the diagram below, systematically

enhancing LLM inference through firmware-level improvements. Each stage builds on the previous, targeting

computational efficiency, memory management, and hardware acceleration to maximize overall system

performance.

Figure 1: Firmware-Level Optimization as a Sequential Process for LLM Inference

3.1 Multi-Tiered Architecture

The structured framework we have created brings optimization opportunities from various systems together and

sees to it that they are optimized at the same time [8]. This strategy depends on linked improvements across all

parts of the system, starting with the hardware and ending with advanced approaches to optimize algorithms.

To optimize, the architecture uses the Hardware Abstraction Layer (HAL) level, Memory Management level and

Computational Optimization level [9] Each step addresses selected parts of the inference process while coordinating

with other steps to support better system performance.

3.2 Quantization-Aware Firmware Routines

Quantization has proven to be a reliable way to decrease large language model (LLM) computer use, keeping the model

precise. Low-precision math in compilers is reduced by the framework using quantization-aware firmware

operations [10]. Programming techniques in quantization- aware firmware include using relevant instructions and

designing their data routes to ensure computations are as fast and accurate as possible.

Various precision options are available with these routines: 8-bit integer, 4-bit integer, and mixed precision. With

dynamic precision adaptation, the system can automate the choice of quantization levels to balance performance,

5. Testing and
Validation

3. Scheduled Memory
Access Optimization:
Prefetching & cache
control for faster
access in memory-

4. Microarchitecture-
Specific Instructions:
Uses NEON (ARM)
and AVX (x86)

Framework: Ensures
real-time performance
and reliability

instructions for

through HIL and CI
testing

optimized hardware-
specific math

2. Quantization- constrained
Aware Firmware: environments
Reduces compute
using 4-bit/8-bit
operations with
dynamic precision

1. Multi-Tiered
Architecture:
System-level
layers: HAL,
Memory
Management,
and
Computation

AMERICAN ACADEMIC PUBLISHER

https://www.academicpublishers.org/journals/index.php/ijvsli 29

quality, and model size [11].

Weight compressions use asymmetric quantization; memory usage is cut using activation quantization, and special

attention to optimization is given through gradient quantization. Using these methods together allows the design

to run fast and still stand up to testing with decent accuracy [12].

3.3 Scheduled Memory Access Optimization

In devices with limited memory, memory access patterns are a major reason LLM inference is slow. Our design

includes a method of arranging memory access to predict data demands, which speeds up data transfers and

increases throughput [13].

The system uses algorithms to look at how the system uses layers and predict what data will be needed next, so it is

brought in before it is used. This brings down the number of memory stall cycles and makes the entire system more

efficient in every way. The system supports ways of changing the amount of memory allocated which matches the

needs of the model and the computing hardware at any given time [14].

Figure 2: Memory Access Optimization Framework for LLM Inference

Optimizing cache is a major aspect of the memory access optimization framework. Within the framework, adaptive

policies are applied for caching, so the main model parameters are held in the cache while less frequent items are

removed or evicted. As these architectures work, these policies have been tuned and provide a significant cache hit

rate boost [15].

3.4 Microarchitecture-Specific Instruction Sets

Different embedded processors feature assorted instruction sets and levels of performance. To address this

inconsistency, our system benefits from architecture-specific enhancement to instructions that enhance the

performance of target devices without hindering portability to other hardware configurations.

The framework executes matrix computations encountered in transformer layers by using dedicated NEON

sequences on ARM processors [16]. With simple instruction code and minimal register load, these sequences

achieve parallel processing using the NEON engine. With x86-based embedded platforms, the framework uses

Advanced Vector Extensions (AVX) and Streaming SIMD Extensions (SSE) instructions to make vector computations

faster and reduce how much time they require.

LLM Inference

on Devices

Reduced Memory

Stalls
Data Demand

Prediction

Dynamic Memory

Allocation

Memory Access

Pattern Optimization

Adaptive Cache

Policies

Layer Access

Analysis

Increased

Throughput &

Efficiency

AMERICAN ACADEMIC PUBLISHER

https://www.academicpublishers.org/journals/index.php/ijvsli 30

Such algorithms are used to design the best way to send instructions into the pipeline so that it is full, and stalls are

minimized [17]. They use facts about microarchitecture, including how deep the pipelines are, how many execution

units are accessible, and how they deal with dependencies, to develop optimized instruction streams for LLM

computational kernels.

Table 1: Firmware-Level Optimization Strategies for LLM Inference

Optimization Layer Technique Description Target Hardware

Quantization-Aware

Firmware

4-bit, 8-bit, mixed-

precision operations

Reduces compute load and

memory usage while maintaining

acceptable accuracy

General Embedded

Systems

Scheduled Memory

Access

Predictive data

prefetching, cache

policies

Speeds up memory access by

anticipating layer needs and

optimizing cache usage

Memory- Constrained

Devices

Microarchitecture- Specific

Code

NEON (ARM), AVX/SSE

(x86)

sequences

Executes matrix

Operations using architecture-

specific instruction sets

ARM NEON, x86 AVX

Adaptive Precision Dynamic quantization

level selection

Automatically selects precision to

balance performance and quality

All Configurations

Weight & Gradient

Quantization

Asymmetric and

activation-specific

quantization

Further reduces memory without

 significantly

affecting accuracy

Transformer- Based

Models

This table outlines key firmware-level optimization techniques that enhance LLM inference on embedded systems. It

highlights strategies across quantization, memory access, and hardware- specific instruction sets. These

optimizations reduce latency, improve efficiency, and maintain accuracy, enabling high-performance AI applications

on low-power devices through deeper integration with hardware capabilities [19].

4. TESTING AND VALIDATION FRAMEWORK

4.1 Hardware-in-the-Loop Testing Architecture

Testing must be strong enough to ensure firmware optimizations perform reliably and maintain good functioning

[18]. Using an advanced HIL system is a real-time testing technique where actual hardware components interact

AMERICAN ACADEMIC PUBLISHER

https://www.academicpublishers.org/journals/index.php/ijvsli 31

with simulated environments. It's used to validate embedded systems, firmware, or control algorithms under

realistic scenarios without deploying the full physical system. The system models the environment (e.g., sensors,

actuators, physical dynamics) in real-time using software. The simulated model sends inputs to the hardware;

responses are measured to assess performance, stability, and optimization efficiency. Metrics like latency, power

usage, and error handling are recorded and analysed.

The test system runs automated suites that challenge the LLM to work on different input lengths, different settings

and with varied resource access. The real-time system monitors many aspects, including the time taken by

inferences, how much RAM and power is being used and how well accuracy is maintained over multiple setup

optimizations.

4.2 Continuous Integration Pipeline

Because firmware optimization can change over time, it’s necessary to keep checking that it does not cause any

problems or reduce performance as conditions vary [2].

Figure 3: Firmware Change Triggered CI Optimization Framework

The framework is designed so that any changes to the firmware automatically trigger the continuous integration

process, which validates the applied optimization methods. This means that the system continuously monitors

firmware updates, ensuring that any modification—whether it's a minor patch or a major overhaul—immediately

activates a pipeline for integration testing. The continuous integration (CI) mechanism not only compiles and builds

the updated firmware but also runs a suite of automated tests to check for correctness, performance, and stability.

As a result, developers receive instant feedback on whether the optimizations they applied are effective or

introduce new issues.

Performance benchmarking, checking of features and cross-platform compatibility are all carried out automatically

in the pipeline. Using version control systems with optimization allows you to observe the success of optimization

changes over a period and restore changes when needed [3].

4.3 Performance Metrics and Evaluation Criteria

Having precise metrics is required to judge how firmware optimizations affect performance and what side effects

they have. The criteria we use for our system involve cutting inference time, boosting memory, cutting energy costs

and already-accurate models.

Table 2: Evaluation Metrics for Optimization Performance

Metric Description Purpose

Firmware
Changes

CI Process
Triggered

Optimization
Validation

AMERICAN ACADEMIC PUBLISHER

https://www.academicpublishers.org/journals/index.php/ijvsli 32

Time to First Token

(TTFT)

Duration to generate the first output

token

Measures latency

improvements

Token Generation

Speed

Rate at which model generates

subsequent tokens

Reflects throughput

enhancements

Cache Hit Ratio Percentage of cache accesses that are

successful

Indicates efficiency of

memory optimization

Memory Bandwidth

Utilization

Amount of memory transferred per unit

time

Assesses memory access

efficiency

Energy per

Inference

Power consumed per inference

operation

Evaluates energy efficiency

Accuracy Retention (%) Accuracy retained post-optimization

(compared to original model)

Ensures quality is preserved

(>95% in study)

Relevant metrics for compute performance checks involve the time it takes to obtain the first token (TTFT), token

generation speed, memory bandwidth use, hit ratio of caches and energy needed each time an inference operation

is done [4]. They assess the overall impact of optimization and assist decision-making over different optimization

challenges.

5. IMPLEMENTATION CONSIDERATIONS AND PRACTICAL GUIDANCE

5.1 Platform-Specific Adaptations

Firmware optimizations are successful by closely considering the features and limits of the target platform. In

embedded systems, capabilities vary in their processing speed, how much memory is available which instructions

can be used and the range of peripheral interfaces. Our approach provides suggestions that let developers adjust the

optimization method based on the hardware they are using. In response to constrained memory conditions, the

framework employs efficient memory organization techniques and runs lightweight computational kernels. To take

advantage of the processing power in stronger embedded systems, the framework makes use of powerful

instruction types and supports parallelism between computing units [17].

5.2 Development Tools and Utilities

For firmware optimization to be successful, specialized tools are needed that make optimization possible without

making development slower. Our system includes advanced tools such as performance profilers, change validation

frameworks for development, including tools for identifying slowdowns, validating changes and checking how well

optimization works.

AMERICAN ACADEMIC PUBLISHER

https://www.academicpublishers.org/journals/index.php/ijvsli 33

Figure 4: Optimization Toolchain for Efficient Firmware Development

Because of such tools, developers can use safe optimizations without needing to write in assembly or learn all the

necessary microarchitecture details [7]. Optimization tools translate the main requirements into working firmware

which significantly saves time and effort in development.

5.3 Integration with Existing Development Workflows

Firmware optimization should easily connect to the present tools and processes used in development [8]. The

system provides integration support for common embedded development environments by connecting with

standard build systems, debuggers, and deployment packages.

Figure 5: Integration of Firmware Optimization with Development Toolchains

Using version control makes it simple to track and compare how optimization approaches work over the months.

Because of continuous integration, new optimizations can be tested and released directly without interrupting the

development team’s job.

6. FUTURE DIRECTIONS AND RESEARCH OPPORTUNITIES

Optimized Firmware

Output

Change Validation Frameworks

Slowdown Identification

Safe Optimization

(Microarchitecture

details)

Need for

Optimization Tools

Performance Profiles

Embedded Dev

Environments

Continuous

Integration

Vision Control

Tested &

Released

Optimization

Build Systems

Deployment

Packages

Debuggers
Firmware

Optimization

AMERICAN ACADEMIC PUBLISHER

https://www.academicpublishers.org/journals/index.php/ijvsli 34

6.1 Emerging Hardware Architectures

Because embedded hardware moves fast, finding ways to optimize firmware can be challenging as well as promising.

Similar to neuromorphic and quantum processors, AI accelerators provide an opportunity to make LLMs better than

those built using the traditional von Neumann architecture [10].

Future research will focus on learning about optimizing these new architectures and making adaptive frameworks

that use hardware capabilities automatically. Simply using machine learning for picking optimization approaches

could be a promising future research idea for self- adjusting optimization systems [11].

6.2 Advanced Optimization Techniques

LLM optimization is advancing rapidly and from time to time, new approaches and techniques appear [12]. It is

important to study changing optimization methods, join multiple pinpoint precisions into one model and produce

memory compression algorithms only for transformer architectures.

Adopting hardware-software co-design techniques provides another chance to make the optimization of firmware

more efficient [13]. If engineering teams make optimization possible in hardware design, they might achieve greater

gains through their hardware-firmware strategy.

7. Conclusion

This research introduces a thorough design for firmware-level optimization of LLM inference in embedded systems

to solve issues of both faster performance and high accuracy with less computing power. Performance is enhanced

using the multi-level optimization approach by harmonizing actions at hardware, system and algorithm levels. To

improve efficiency without affecting model quality, the system uses quantization-aware firmware, schedules how

memory is accessed optimally and designs instruction sets that fit with the microarchitecture. Checkingand

guaranteeing that results of optimization are achieved while both reliability and functionality remain intact is the

role of a proper testing and validation method.

The study supports embedded AI developers, ML engineers and system architects with strategies they can apply

right away, helping them integrate directly and effectively with the development process on different platforms.

With increasing demand for AI at the edge, the importance of competent optimization techniques will escalate.

Optimization at the firmware level is a key but currently unexplored area in LLM deployment, offering performance

gains that were previously considered impossible through deep hardware-firmware integration. This study sets the

foundation for future optimization methods and new emerging hardware structures to make edge AI more efficient.

Future development will extend the framework to accommodate a variety of hardware structures, research

dynamic optimization approaches, and create sophisticated testing processes. The overall goal is to make it possible

for the broad adoption of complex LLM technologies in embedded devices, making advanced AI technology

accessible across many applications.

 References

1. NVIDIA. Mastering LLM Techniques: Inference Optimization. (2023, November 17). NVIDIA Technical Blog.

https://developer.nvidia.com/blog/mastering-llm-techniques-inference-optimization/ [Accessed on

24/06/2025].

2. Kumar, A. (2024, September 4). How to Reduce the Latency of a LLM Application? - Aidetic. Medium; Aidetic.

https://blog.aidetic.in/how-to-reduce-the-latency-of-a-llm-application-c84e52eaff9b [Accessed on

24/06/2025].

AMERICAN ACADEMIC PUBLISHER

https://www.academicpublishers.org/journals/index.php/ijvsli 35

3. LucaStamatescu. (2024, May 14). The LLM Latency Guidebook: Optimizing Response Times for GenAI

Applications. TECHCOMMUNITY.MICROSOFT.COM. https://techcommunity.microsoft.com/blog/azure-ai-

services-blog/the-llm-latency-guidebook-optimizing-response-times-for-genai-applications/4131994

[Accessed on 24/06/2025].

4. Jain, S. (2024, December 18). Why do LLMs have latency ? - Sulbha Jain - Medium. Medium.

https://medium.com/@sulbha.jindal/why-do-llms-have-latency-296867583fd2 [Accessed on 24/06/2025].

5. Filippo, C., Vito, G., Irene, S., Simone, B., & Gualtiero, F. (2024). Future applications of generative large

language models: A data-driven case study on ChatGPT. Technovation, 133, 103002–103002.

https://doi.org/10.1016/j.technovation.2024.103002 [Accessed on 24/06/2025].

6. Son, M., Won, Y.-J., & Lee, S. (2025). Optimizing Large Language Models: A Deep Dive into Effective Prompt

Engineering Techniques. Applied Sciences, 15(3), 1430. https://doi.org/10.3390/app15031430 [Accessed on

24/06/2025].

7. Huang, S., Yang, K., Qi, S., & Wang, R. (2024). When large language model meets optimization. Swarm and

Evolutionary Computation, 90, 101663–101663. https://doi.org/10.1016/j.swevo.2024.101663 [Accessed on

24/06/2025].

8. Pankaj. (2024, January 13). Optimizing LLMs for Your Use Cases: A Developer’s Guide. Medium.

 https://medium.com/@pankaj_pandey/optimizing-llms-for-your-use-cases-a-developers-guide-

4fa2d8b43d02 [Accessed on 24/06/2025]. Aman, Y. (2025, February 14).

9. Aman, Y. (2025, February 14). LLM Model Optimisation Techniques and Frameworks - Yugank.Aman - Medium.

Medium. https://medium.com/@yugank.aman/llm-model-optimization-techniques-and-frameworks-

e21d57744ca1 [Accessed on 24/06/2025].

10. Zheng, Y., Chen, Y., Qian, B., Shi, X., Shu, Y., & Chen, J. (2025). A Review on Edge Large Language Models: Design,

Execution, and Applications. ACM Computing Surveys. https://doi.org/10.1145/3719664 [Accessed on

24/06/2025].

11. Naminas, K. (2024, December 11). LLM Inference: Techniques for Optimized Deployment. Labelyourdata.com;

Label Your Data. https://labelyourdata.com/articles/llm-inference [Accessed on 24/06/2025].

12. Sivakumar, S. (2024). Performance Optimization of Large Language Models (LLMs) in Web Applications.

International Journal of Advanced Scientific Research, 8(1), 1077–1096.

https://www.researchgate.net/publication/386342544_Performance_Optimization_of_Large_

Language_Models_LLMs_in_Web_Applications [Accessed on 24/06/2025].

13. Shahzad, T., Mazhar, T., Tariq, M. U., Ahmad, W., Khmaies Ouahada, & Habib Hamam. (2025). A comprehensive

review of large language models: issues and solutions in learning environments. Discover Sustainability, 6(1).

https://doi.org/10.1007/s43621-025-00815-8 [Accessed on 24/06/2025].

14. Stöffelbauer, A. (2023, October 24). How Large Language Models Work. Data Science at Microsoft; Medium.

https://medium.com/data-science-at-microsoft/how-large-language-models-work-91c362f5b78f [Accessed

on 24/06/2025].

15. Naveed, H., Ullah Khan, A., Qiu, S., Saqib, M., Anwar, S., Usman, M., Akhtar, N., Barnes, N., & Mian, A. (2023). A

Comprehensive Overview of Large Language Models. http://arxiv.org/pdf/2307.06435 [Accessed on

24/06/2025].

16. IBM. (2023, November 2). What are large language models (LLMs)? Ibm.com; IBM.

https://medium.com/%40sulbha.jindal/why-do-llms-have-latency-296867583fd2
https://medium.com/%40pankaj_pandey/optimizing-llms-for-your-use-cases-a-
https://medium.com/%40yugank.aman/llm-model-
http://www.researchgate.net/publication/386342544_Performance_Optimization_of_Large_
http://arxiv.org/pdf/2307.06435

AMERICAN ACADEMIC PUBLISHER

https://www.academicpublishers.org/journals/index.php/ijvsli 36

https://www.ibm.com/think/topics/large-language-models [Accessed on 24/06/2025].

17. Ali, A., & Ghanem, M. C. (2025). Beyond Detection: Large Language Models and Next- Generation

Cybersecurity. SHIFRA, 2025, 81–97. https://doi.org/10.70470/shifra/2025/005 [Accessed on 24/06/2025].

Ghosh, B. (2024, June 3). Prompt Optimization, Reduce LLM Costs and Latency - Bijit Ghosh - Medium. Medium.

https://medium.com/@bijit211987/prompt-optimization-reduce-llm-costs-and-latency-a4c4ad52fb59

[Accessed on 24/06/2025].

18. Ghosh, B. (2024, June 3). Prompt Optimization, Reduce LLM Costs and Latency - Bijit Ghosh - Medium. Medium.

https://medium.com/@bijit211987/prompt-optimization-reduce-llm-costs-and-latency-a4c4ad52fb59

[Accessed on 24/06/2025].

19. Y. Bian, Y. Song, G. Ma, R. Zhu, and Z. Cai, “DroidRetriever: An Autonomous Navigation and Information

Integration System Facilitating Mobile Sensemaking,” arXiv.org, 2025. https://arxiv.org/abs/2505.03364

(accessed Jun. 25, 2025).

http://www.ibm.com/think/topics/large-language-models
https://medium.com/%40bijit211987/prompt-optimization-reduce-
https://medium.com/%40bijit211987/prompt-optimization-reduce-

