INTERNATIONAL JOURNAL OF SIGNAL PROCESSING, EMBEDDED
SYSTEMS AND VLSI DESIGN (ISSN: 2693-3861)

VOL.06 ISSUEO01 (2026)

AMERICAN
ACADEMIC
PUBLISHER

Research Article

Progressive Server-Side Rendering, Domain-Specific
Templating, and Perceived Web Performance: A Unified
Architectural and Theoretical Analysis

Dr. Alejandro !

check far

updates
Received: 12 November 2025
Revised: 2 December 2025
Accepted: 20 December 2025
Published: 01 January 2026

Copyright: © 2026 Authors retain
the copyright of their manuscripts,
and all Open Access articles are
disseminated under the terms of the
Creative Commons Attribution
License 4.0 (CC-BY), which licenses
unrestricted use, distribution, and
reproduction in any medium,
provided that the original work is

appropriately cited.

https://www.academicpublishers.org/journals/index.php/ijvsli

1Head of the Department, Universidad de Barcelona, Spain

Abstract

Modern web applications are increasingly evaluated not only by their functional correctness
but by how quickly and progressively they present meaningful content to users. Perceived
performance metrics, particularly First Contentful Paint, have emerged as central indicators
of user experience, yet they remain deeply entangled with architectural decisions at the
server, template engine, and programming language levels. This research article develops a
comprehensive theoretical and architectural analysis of progressive server-side rendering as
a unifying response to the tension between responsiveness, scalability, and maintainability in
contemporary web systems. Drawing strictly on foundational and contemporary literature in
web performance metrics, event-driven server design, reactive streams, domain-specific
languages, and model-view separation, the article constructs an integrated conceptual
framework that explains how progressive rendering, suspendable templates, and
asynchronous I/0 collectively redefine the server-rendered web. Rather than treating
rendering as a monolithic operation, this work elaborates rendering as a staged, reactive, and
semantically constrained process rooted in principles of lambda calculus, domain-driven
design, and architectural patterns. The methodology is analytical and conceptual, synthesizing
prior empirical findings and theoretical models into a coherent explanatory structure. The
results are presented as descriptive architectural outcomes, highlighting improvements in
perceived performance, reduction of head-of-line blocking, and stronger guarantees of
separation between domain logic and presentation. The discussion critically examines
limitations, including cognitive overhead, tooling complexity, and compatibility challenges,
while outlining future directions for language-integrated templating and reactive server
frameworks. The article concludes that progressive server-side rendering is not merely an
optimization technique but a paradigmatic shift in how web systems align human perception,
programming language theory, and distributed system architecture.

Keywords: Progressive server-side rendering, First Contentful Paint, domain-specific
languages, reactive streams, web architecture, template engines

INTRODUCTION

The evolution of the web from static document delivery to highly interactive, data-
intensive applications has fundamentally transformed both user expectations and system
design constraints. Early web architectures were primarily concerned with correctness
and basic availability, delivering entire HTML documents in a single synchronous
response. As applications grew in complexity, the focus gradually shifted toward
scalability, modularity, and maintainability, giving rise to well-established architectural
patterns such as Model-View-Controller and layered enterprise architectures (Krasner
& Pope, 1988; Fowler, 2002). In recent years, however, a renewed emphasis on user-
perceived performance has exposed critical limitations in traditional rendering
pg. 1



https://www.academicpublishers.org/journals/index.php/ijvsli
https://www.academicpublishers.org/journals/index.php/ijvsli
https://doi.org/10.55640/ijdsml-06-01-01

American Academic Publisher

approaches, particularly in relation to latency, blocking behavior, and delayed visual
feedback.

Among the various performance indicators proposed to quantify user experience, First
Contentful Paint has emerged as a particularly influential metric. It captures the moment
when the browser first renders any content from the Document Object Model, providing
a tangible proxy for the user’s perception that the page is loading and responsive (Edgar,
2024). Unlike backend-centric metrics such as throughput or average response time, First
Contentful Paint bridges technical execution and human cognition, emphasizing the
importance of incremental progress over total completion. This shift in evaluative focus
has profound implications for server-side rendering strategies, template engines, and the
programming models used to orchestrate data access and view generation.

Traditional server-side rendering often assumes that all required data must be available
before any output can be produced. This assumption leads to head-of-line blocking, where
slow data sources delay the entire response, even if parts of the page could have been
rendered earlier. Event-driven servers and asynchronous I/O models were introduced to
address scalability concerns by decoupling request handling from blocking operations
(Elmeleegy et al.,, 2004). However, these advances did not automatically translate into
progressive rendering, as many template engines and frameworks remained
fundamentally synchronous in their rendering semantics.

Recent research on progressive server-side rendering and suspendable web templates
challenges this assumption by proposing that rendering itself can be decomposed into
incremental stages, each corresponding to the availability of specific data dependencies
(Carvalho, 2025; Carvalho & Fialho, 2023). In this paradigm, the server begins streaming
HTML to the client as soon as the first renderable fragments are ready, thereby improving
First Contentful Paint and overall perceived performance without sacrificing server-side
control or search engine compatibility. This approach requires a careful rethinking of
template design, programming abstractions, and architectural boundaries.

At the same time, long-standing debates around template engines and model-view
separation resurface with renewed urgency. Text-based templates have been criticized
for encouraging the leakage of domain logic into the view layer, undermining
maintainability and correctness (Parr, 2004; Carvalho et al., 2020). Domain-specific
languages for HTML generation, such as type-safe Java-based DSLs, offer an alternative
by embedding view construction within a host language while preserving strict
separation of concerns (Carvalho, 2017; Fowler, 2010). These approaches draw on
deeper theoretical foundations in programming language research, including lambda
calculus and the design of extensible languages (Landin, 1965; Landin, 1966; Sussman &
Steele, 1975).

Despite the richness of this literature, existing research often treats performance metrics,
server architectures, and template language design as largely independent concerns.
There remains a gap in integrative analyses that explain how these dimensions interact
and reinforce one another within progressive server-side rendering systems. This article
addresses that gap by offering a unified theoretical and architectural analysis grounded
strictly in the provided references. By synthesizing insights from web performance
measurement, event-driven I/0, reactive streams, enterprise architecture patterns, and
programming language theory, the study aims to articulate a cohesive understanding of
progressive rendering as both a technical mechanism and a conceptual shift.

The problem addressed in this article is not merely how to make pages load faster in
absolute terms, but how to align system architecture with human perception, developer
cognition, and long-term maintainability. The literature suggests that improvements in
perceived performance often require structural changes that challenge established
practices, raising questions about complexity, abstraction, and design discipline. By
examining these tensions in depth, this work seeks to contribute a rigorous conceptual
foundation for future research and practice in server-rendered web applications.

METHODOLOGY

.2
https://www.academicpublishers.org/journals/index.php/ijvsli pg



https://www.academicpublishers.org/journals/index.php/ijvsli

American Academic Publisher

The methodological approach adopted in this research is qualitative, analytical, and
theory-driven. Rather than conducting new empirical experiments or performance
benchmarks, the study systematically analyzes and synthesizes existing authoritative
sources to construct an integrated conceptual framework. This approach is appropriate
given the article’s objective of theoretical elaboration and architectural interpretation, as
well as the constraint of relying strictly on the provided references.

The first methodological step involves a close reading and thematic analysis of literature
on web performance metrics, with particular emphasis on First Contentful Paint as
articulated in contemporary performance guides (Edgar, 2024). This analysis focuses on
how such metrics redefine success criteria for web systems and implicitly demand
architectural support for incremental rendering. By treating performance metrics as
socio-technical artifacts rather than neutral measurements, the methodology situates
them within broader design decisions.

The second step examines server-side execution models, especially event-driven
architectures and asynchronous I/0. Foundational work on lazy asynchronous I/0 for
event-driven servers provides the conceptual basis for understanding how servers can
handle large numbers of concurrent requests without blocking (Elmeleegy et al., 2004).
This literature is analyzed not only for its scalability implications but also for its relevance
to streaming output and partial responses, which are essential for progressive rendering.
The third methodological component focuses on progressive server-side rendering and
suspendable templates as described in recent conference proceedings (Carvalho, 2025;
Carvalho & Fialho, 2023). These sources are treated as primary contributions that
explicitly bridge asynchronous execution models and template rendering. The analysis
dissects their proposed abstractions, assumptions, and claimed benefits, situating them
within the broader context of web architecture.

The fourth component addresses template engines, domain-specific languages, and
model-view separation. Technical reports on HtmlFlow and Thymeleaf provide concrete
examples of contrasting approaches to server-side templating (Carvalho, 2017;
Fernandez, 2011). These are analyzed alongside theoretical critiques of text-based
templates and arguments for strict separation of concerns (Parr, 2004; Carvalho et al,,
2020). Foundational texts on domain-specific languages and enterprise architecture
patterns are used to frame these discussions within established design principles
(Fowler, 2002; Fowler, 2010; Alur et al., 2001).

The fifth methodological strand draws on programming language theory, particularly
lambda calculus and extensible language design. Classic works by Landin and by Sussman
and Steele are examined to elucidate the theoretical underpinnings of embedding
domain-specific abstractions within general-purpose languages (Landin, 1965; Landin,
1966; Sussman & Steele, 1975). These theories are not treated as historical curiosities but
as living foundations that inform modern templating DSLs.

Finally, the methodology integrates the Reactive Streams specification as a conceptual
bridge between asynchronous data flow and backpressure-aware streaming (Netflix et
al, 2015). This specification is analyzed for its relevance to progressive rendering
pipelines, particularly in terms of controlling resource usage and coordinating producers
and consumers.

Throughout this process, the methodology emphasizes interpretive rigor, cross-
referencing claims across multiple sources, and avoiding speculative assertions not
grounded in the provided literature. The result is a dense, interconnected analysis that
foregrounds conceptual clarity and theoretical depth over empirical novelty.

RESULTS

The analytical synthesis of the referenced literature yields several interrelated outcomes
that can be described as architectural, conceptual, and experiential results. These results
do not take the form of numerical measurements but of descriptive findings that clarify
how progressive server-side rendering reshapes web system behavior and design.

One primary result is the identification of progressive rendering as a direct architectural

.3
https://www.academicpublishers.org/journals/index.php/ijvsli pg



https://www.academicpublishers.org/journals/index.php/ijvsli

American Academic Publisher

response to the requirements imposed by First Contentful Paint. By analyzing
performance metrics as design drivers, it becomes evident that traditional monolithic
rendering models are structurally misaligned with metrics that reward early visual
feedback (Edgar, 2024). Progressive server-side rendering, by contrast, aligns the
temporal structure of server output with the browser’s rendering pipeline, enabling
meaningful content to appear as soon as possible.

A second result concerns the role of asynchronous I/0 and event-driven servers in
enabling progressive rendering. Lazy asynchronous I/0 decouples request handling from
blocking operations, allowing servers to interleave computation, data fetching, and
output generation (Elmeleegy et al., 2004). When combined with rendering models that
can suspend and resume template execution, this decoupling translates into tangible
improvements in responsiveness, as the server no longer waits for all data dependencies
before emitting output.

A third result emerges from the examination of suspendable templates and progressive
server-side rendering frameworks. These approaches demonstrate that templates can be
treated as computational processes with well-defined suspension points, rather than as
static text expansions (Carvalho, 2025). This reconceptualization enables fine-grained
control over rendering order and data dependencies, allowing developers to express
which parts of a page are critical for early display and which can be deferred.

Another significant result relates to maintainability and separation of concerns. The
literature on text-based templates reveals systematic problems associated with
embedding logic in presentation layers, including reduced readability, increased
coupling, and difficulty in reasoning about correctness (Parr, 2004; Carvalho et al., 2020).
Domain-specific languages for HTML generation, particularly type-safe DSLs, address
these issues by leveraging host language features such as static typing and compositional
abstractions (Carvalho, 2017; Fowler, 2010). When integrated with progressive
rendering, these DSLs provide a disciplined way to express incremental output without
sacrificing architectural clarity.

The analysis also highlights the relevance of reactive streams to server-side rendering
pipelines. By treating rendering output as a stream subject to backpressure, systems can
prevent resource exhaustion and coordinate data production with client consumption
(Netflix et al.,, 2015). This result underscores that progressive rendering is not merely
about sending data earlier, but about managing flow and demand across system
boundaries.

Finally, the theoretical analysis reveals that modern progressive rendering techniques
are deeply rooted in programming language theory. Concepts from lambda calculus, such
as delayed evaluation and compositionality, underpin the ability to suspend and resume
rendering computations (Landin, 1965; Sussman & Steele, 1975). The result is a
recognition that advances in web architecture often rediscover and reapply foundational
ideas from language research.

DISCUSSION

The results outlined above invite a deeper discussion of their implications, limitations,
and broader significance. Progressive server-side rendering emerges not as an isolated
optimization but as a convergence point for multiple strands of research and practice.
This convergence raises important questions about complexity, abstraction, and the
future evolution of web frameworks.

One key implication concerns the shifting role of the server in the age of rich client-side
applications. While client-side rendering and single-page applications have been
promoted as solutions to performance and interactivity challenges, the literature
suggests that server-side rendering remains indispensable for initial load performance,
accessibility, and search engine visibility. Progressive server-side rendering reconciles
these priorities by delivering early content without relinquishing server control,
challenging the narrative that client-side rendering is inherently superior.

Another important discussion point involves developer cognition and tooling.

.4
https://www.academicpublishers.org/journals/index.php/ijvsli pg



https://www.academicpublishers.org/journals/index.php/ijvsli

American Academic Publisher

Suspendable templates and reactive rendering pipelines introduce new abstractions that
developers must understand and reason about. While domain-specific languages can
mitigate some complexity by providing structured constructs, they also require
familiarity with functional composition, asynchronous flows, and streaming semantics.
This raises questions about the trade-off between expressive power and learning curve,
echoing long-standing debates in language design (Fowler, 2010; Landin, 1966).

The discussion also highlights limitations related to ecosystem compatibility. Many
existing frameworks, template engines, and middleware components are designed
around synchronous assumptions. Integrating progressive rendering into such
ecosystems may require significant refactoring or the adoption of specialized servers and
libraries. This practical constraint may slow adoption, despite the conceptual advantages
identified in the literature.

From a theoretical perspective, the analysis underscores the enduring relevance of
foundational ideas in programming languages and architecture. The reappearance of
lambda calculus concepts in modern web templating, and the alignment of reactive
streams with event-driven servers, suggest that perceived innovation often consists of
recontextualizing established theories within new technological constraints. This
observation invites a more historically informed approach to web engineering research.

Future research directions suggested by this discussion include empirical studies that
measure the long-term maintainability impacts of progressive rendering frameworks, as
well as comparative analyses of developer productivity across different templating
paradigms. There is also scope for exploring language-level support for suspendable
computations, potentially reducing the need for framework-specific abstractions.

CONCLUSION

This article has presented an extensive theoretical and architectural analysis of
progressive server-side rendering, situating it at the intersection of web performance
metrics, server execution models, template language design, and programming language
theory. By synthesizing insights from a diverse yet coherent body of literature, the study
demonstrates that progressive rendering is fundamentally about aligning system
behavior with human perception, rather than merely reducing raw execution time.

The analysis shows that First Contentful Paint serves as a powerful catalyst for rethinking
rendering strategies, exposing the limitations of monolithic, synchronous approaches.
Event-driven servers and asynchronous [/0 provide the necessary execution substrate,
while suspendable templates and domain-specific languages offer expressive and
maintainable means of structuring incremental output. Reactive streams further
contribute a principled model for managing flow and backpressure, ensuring that
progressive delivery remains robust under load.

Beyond its technical contributions, the article argues that progressive server-side
rendering represents a paradigmatic shift in web architecture, one that reconnects
modern practice with foundational theories of computation and language design. By
embracing this perspective, researchers and practitioners can move toward web systems
that are not only faster in perception but also clearer in structure, more maintainable in
the long term, and more deeply grounded in sound theoretical principles.

REFERENCES

1. Alur, D, Malks, D., & Crupi, J. Core J]2EE Patterns: Best Practices and Design Strategies. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2001.

2. Carvalho, F. M. HtmlFlow Java DSL to Write Typesafe HTML. Technical Report, 2017. Available online:
https://htmlflow.org/

3. Carvalho, F. M. Progressive Server-Side Rendering with Suspendable Web Templates. In Web Information
Systems Engineering—WISE 2024; Springer, Singapore, 2025; pp. 458-473.

4. Carvalho, F. M., & Fialho, P. Enhancing SSR in Low-Thread Web Servers: A Comprehensive Approach for

https://www.academicpublishers.org/journals/index.php/ijvsli

Progressive Server-Side Rendering with Any Asynchronous API and Multiple Data Models. In Proceedings of

pg. 5



https://www.academicpublishers.org/journals/index.php/ijvsli

American Academic Publisher

10.

11.
12.

13.

14.
15.

16.

17.
18.

19.

20.

https://www.academicpublishers.org/journals/index.php/ijvsli

the 19th International Conference on Web Information Systems and Technologies, Rome, Italy, 2023.

Carvalho, F. M., Duarte, L., & Gouesse, J. Text Web Templates Considered Harmful. Lecture Notes in Business
Information Processing; Springer, Cham, Switzerland, 2020; pp. 69-95.

Edgar, M. First Contentful Paint. In Speed Metrics Guide: Choosing the Right Metrics to Use When Evaluating
Websites; Apress, Berkeley, CA, USA, 2024; pp. 73-91.

Elmeleegy, K., Chanda, A., Cox, A. L., & Zwaenepoel, W. Lazy Asynchronous I/O for Event-Driven Servers. In
Proceedings of the USENIX Annual Technical Conference, Boston, MA, USA, 2004.

Evans, E., & Fowler, M. Domain-Driven Design: Tackling Complexity in the Heart of Software. Addison-Wesley,
Boston, MA, USA, 2004.

Fernandez, D. Thymeleaf. Technical Report, 2011. Available online: https://www.thymeleaf.org/

Fowler, M. Patterns of Enterprise Application Architecture. Addison-Wesley Longman Publishing Co., Boston,
MA, USA, 2002.

Fowler, M. Domain Specific Languages. Addison-Wesley Professional, Boston, MA, USA, 2010.

Krasner, G. E.,, & Pope, S. A Description of the Model-View-Controller User Interface Paradigm in the
Smalltalk80 System. Journal of Object-Oriented Programming, 1988, 1, 26-49.

Landin, P. J. Correspondence Between ALGOL 60 and Church’s Lambda-notation: Part I. Communications of
the ACM, 1965, 8, 89-101.

Landin, P.]. The Next 700 Programming Languages. Communications of the ACM, 1966, 9, 157-166.

Netflix, Pivotal, Red Hat, Oracle, Twitter, & Lightbend. Reactive Streams Specification. Technical Report, 2015.
Available online: https://www.reactive-streams.org/

Parr, T. ]. Enforcing Strict Model-View Separation in Template Engines. In Proceedings of the 13th
International Conference on World Wide Web, New York, NY, USA, 2004; pp. 224-233.

Resig, J. Pro JavaScript Techniques. Apress, New York, NY, USA, 2007.

Sussman, G., & Steele, G. Scheme: An Interpreter for Extended Lambda Calculus. MIT Artificial Intelligence
Laboratory, Cambridge, MA, USA, 1975.

Thompson, K. Programming Techniques: Regular Expression Search Algorithm. Communications of the ACM,
1968, 11, 419-422.

Hors, A. L., Hégaret, P. L., Wood, L., Nicol, G., Robie, J., Champion, M., & Byrne, S. Document Object Model (DOM)
Level 3 Core Specification. Technical Report, 2004.

pg. 6



https://www.academicpublishers.org/journals/index.php/ijvsli

