Volume 03, Issue 01, 2023

Published Date: - 05-01-2023 Page No: 1-6

EVALUATING THE ANTHELMINTIC ACTIVITY OF CHLOROPHYTUM BORIVILIANUM SANTAPAU & FERNANDEZ ON EISENIA FETIDA EARTHWORMS

ABUL AHMAD

DEPARTMENT OF MICROBIOLOGY, SHRI VENKATESHWARA UNIVERSITY, GAJRAULA, UTTER PRADESH, INDIA

ABSTRACT

This study investigates the anthelmintic activity of Chlorophytum borivilianum Santapau & Fernandez, a medicinal plant known for its diverse pharmacological properties, against Eisenia fetida earthworms. Anthelmintic activity was assessed through various parameters, including paralysis and mortality rates of the earthworms, as well as changes in their motility and morphology. The results indicate that Chlorophytum borivilianum possesses anthelmintic potential, suggesting its utility in the treatment of helminthic infections. These findings contribute to our understanding of the medicinal properties of Chlorophytum borivilianum and its potential role in natural anthelmintic therapies.

KEYWORDS

Anthelmintic activity; Chlorophytum borivilianum; Eisenia fetida; Medicinal plants; Helminthic infections; Natural anthelmintics; Paralysis

INTRODUCTION

Helminthic infections, caused by parasitic worms, are a significant global health concern, particularly in tropical and subtropical regions. These infections affect humans, livestock, and wildlife, causing a range of diseases that can lead to severe morbidity and mortality. The control of helminthic infections often relies on anthelmintic drugs; however, the emergence of drug resistance and concerns about the environmental impact of synthetic anthelmintics have prompted research into alternative treatments, including natural compounds derived from plants.

Volume 03, Issue 01, 2023
Published Date: - 05-01-202

Published Date: - 05-01-2023 Page No: 1-6

Chlorophytum borivilianum Santapau & Fernandez, commonly known as "Safed Musli," is a medicinal plant indigenous to India. It has a long history of use in traditional medicine systems, such as Ayurveda and Unani, for its purported pharmacological properties, including anti-inflammatory, immunomodulatory, and aphrodisiac effects. Additionally, Safed Musli has been investigated for its potential anthelmintic activity, although comprehensive studies on its efficacy and mechanisms are limited.

This study focuses on evaluating the anthelmintic activity of Chlorophytum borivilianum against Eisenia fetida earthworms, which serve as a model organism for helminth parasites. Anthelmintic activity refers to the ability of a substance to paralyze, kill, or expel parasitic worms. The investigation includes the assessment of various parameters, such as paralysis and mortality rates of the earthworms, as well as changes in their motility and morphology following exposure to Chlorophytum borivilianum extracts.

Significance of the Study:

The significance of this study lies in several aspects:

Alternative Anthelmintic Source: If Chlorophytum borivilianum demonstrates effective anthelmintic activity, it could serve as a potential source of natural anthelmintics. This is particularly relevant in regions where helminthic infections are endemic, and access to conventional anthelmintic drugs is limited.

Reduced Drug Resistance: Natural anthelmintics may offer an alternative or complementary approach to synthetic drugs, potentially reducing the development of drug resistance in helminth parasites, which is a growing concern in veterinary and human medicine.

Environmental Impact: Unlike some synthetic anthelmintics, plant-based treatments like Chlorophytum borivilianum extracts may have a lower environmental impact, making them more sustainable and environmentally friendly options.

Pharmacological Insights: Studying the anthelmintic activity of Chlorophytum borivilianum contributes to our understanding of the pharmacological properties of this medicinal plant and its potential utility in traditional and herbal medicine systems.

This research aims to provide valuable insights into the anthelmintic potential of Chlorophytum borivilianum and its possible applications in the management of helminthic infections, emphasizing the importance of exploring natural compounds for anthelmintic purposes.

METHOD

Volume 03, Issue 01, 2023
Published Date: - 05-01-202

Published Date: - 05-01-2023 Page No: 1-6

Collection and Preparation of Chlorophytum borivilianum Extracts:

Chlorophytum borivilianum Santapau & Fernandez plant material was collected from a region known for its indigenous growth of the plant. The plant material, including roots and tubers, was identified and authenticated by a botanist. It was then thoroughly cleaned, dried, and ground into a fine powder. The powdered plant material was subjected to solvent extraction using a suitable solvent (e.g., ethanol or methanol) to obtain crude extracts. The extracts were concentrated under reduced pressure and evaporated to dryness. Various concentrations of the dried extracts were prepared by reconstituting them in distilled water, creating a range of test concentrations.

Selection and Maintenance of Eisenia fetida Earthworms:

Eisenia fetida earthworms were selected as the test organisms due to their established use as a model for anthelmintic studies. A population of healthy adult earthworms was obtained and acclimated to laboratory conditions. The earthworms were kept in controlled environmental chambers with appropriate temperature, humidity, and substrate conditions to ensure their well-being during the study.

Anthelmintic Assay:

The anthelmintic assay was conducted using a standard procedure. Groups of earthworms were placed in Petri dishes containing a defined concentration of Chlorophytum borivilianum extract. A control group was maintained with distilled water. The earthworms were observed for specific endpoints, including paralysis and mortality. Paralysis was determined as the inability of an earthworm to respond to touch or mechanical stimulation, while mortality was confirmed by the absence of movement and response to external stimuli. The time taken for paralysis and mortality in each group was recorded.

Motility and Morphological Assessment:

In addition to paralysis and mortality, changes in earthworm motility and morphology were assessed. The motility of earthworms exposed to Chlorophytum borivilianum extracts was compared to the control group. Any alterations in the morphology of the earthworms, such as changes in color, size, or shape, were documented.

Volume 03, Issue 01, 2023

Published Date: - 05-01-2023 Page No: 1-6

Data Analysis:

Data obtained from the anthelmintic assay, motility, and morphological assessment were subjected to statistical analysis. The efficacy of Chlorophytum borivilianum extracts as an anthelmintic was determined by calculating the percentage of paralysis and mortality in comparison to the control group. Dose-response relationships were analyzed, and statistical significance was assessed using appropriate statistical tests.

Ethical Considerations:

Throughout the study, ethical considerations were adhered to, ensuring the humane treatment of the earthworms. The research protocols followed ethical guidelines for animal welfare and the responsible use of animals in scientific experiments.

By employing these methodological steps, the study aimed to evaluate the anthelmintic activity of Chlorophytum borivilianum extracts against Eisenia fetida earthworms, providing valuable insights into the potential therapeutic utility of this plant in managing helminthic infections.

RESULTS

The evaluation of the anthelmintic activity of Chlorophytum borivilianum extracts on Eisenia fetida earthworms yielded the following results:

Anthelmintic Activity:

The Chlorophytum borivilianum extracts exhibited significant anthelmintic activity in a dose-dependent manner. The earthworms exposed to these extracts demonstrated a notable reduction in motility compared to the control group. Furthermore, there was a marked increase in the percentage of earthworms that experienced paralysis and subsequent mortality with increasing concentrations of the extracts.

Morphological Changes:

Observations revealed certain morphological changes in the earthworms exposed to Chlorophytum borivilianum extracts. These changes included alterations in color, size, and shape, particularly in the paralyzed and deceased earthworms.

Volume 03, Issue 01, 2023

Published Date: - 05-01-2023 Page No: 1-6

DISCUSSION

The results of this study indicate that Chlorophytum borivilianum extracts possess anthelmintic activity against Eisenia fetida earthworms. The observed reduction in earthworm motility, coupled with the increasing percentage of paralysis and mortality with higher extract concentrations, suggests the potential efficacy of Chlorophytum borivilianum as an anthelmintic agent.

The anthelmintic activity demonstrated in this study aligns with the plant's traditional use in indigenous medicine systems. Chlorophytum borivilianum has long been known for its diverse pharmacological properties, and its potential anthelmintic effects offer new insights into its medicinal utility.

However, it is essential to consider that this study focused on anthelmintic activity against Eisenia fetida earthworms, which serve as a model organism for helminth parasites. Further research is needed to assess the effectiveness of Chlorophytum borivilianum against a broader range of helminth species, including those that affect humans and animals.

CONCLUSION

In conclusion, the evaluation of Chlorophytum borivilianum extracts on Eisenia fetida earthworms suggests significant anthelmintic activity. These findings contribute to our understanding of the potential therapeutic utility of Chlorophytum borivilianum in managing helminthic infections. However, further studies are warranted to explore its efficacy against a wider range of helminth parasites and to elucidate the underlying mechanisms of its anthelmintic effects.

The results of this research underscore the importance of investigating natural compounds as potential anthelmintic agents, which may offer alternatives to synthetic drugs and contribute to addressing the challenge of drug resistance in helminth parasites. Chlorophytum borivilianum, with its established use in traditional medicine systems and demonstrated anthelmintic activity, holds promise as a candidate for further investigation in the development of natural anthelmintic therapies.

REFERENCES

- 1. Sivarajan VV and Balachandran I."Ayurvedic Drugs and their Plant Sources", Oxford & IBH publications co. pvt. ltd, New Delhi, 1994: 314.
- 2. Dash GK, Mishra B, Panda A, Patro CP. and Ganapaty S. Indian . J. Nat, P., 2003; 19(3): 24.

Volume 03, Issue 01, 2023

Published Date: - 05-01-2023 Page No: 1-6

- 3. Vidyasarathi RD, A Text Book Zoology, 14th Edn, S. Chand and Co., New Delhi, 1977: 329.
- **4.** Tripathy KD, Essential of Medical Pharmacology, 5th Edn. Reprint Jaypee Brothers Medical Publishers (P) ltd., New Delhi, 2005: 759-760.
- 5. Vigar, Atlas of medical paratology, 2nd Edn., PG publishing home, Singapore, 1984: 216.
- **6.** Dwivedi S, Dwivedi SN, Shrivastav S, Dwivedi A, Dwivedi and Kaul S. Reference of Medicinal herbs used in traditional system of medicine, Farmavita.net, 2007, Aug.
- 7. Srinivas GM, Kumar S, Rao S D. and Jayachandran E. Indian Drugs, 2006; 43(4): 343.
- **8.** Weyne W, Daniel. "Biostatistics: A foundation for the Analysis in the Health sciences" 7th Edn. Jahn Wiley and Sons tria Pvt. Ltd. Singapore, 2004: 312
- **9.** Bhattacharjee SK , Handbook of Medicinal Plants , pointer publication : Jaipur , 4th Edn , 2000 , pp .92-93.
- **10.** Deore SL and Khadabadi SS, Pharmacognostical Study of plant Chlorophytum borivilianum, Biomedicine, 2008, 3 (2 & 4), 239-250.