
Fluid Dynamic Performance and Flow Behavior of a Reversible S-Cambered Airfoil
Prof. Anna Müller , Institute of Aerodynamics and Gas Dynamics, University of Stuttgart, Germany Dr. Alejandro Torres , Institute of Aeronautics and Space, Technical University of Madrid (UPM), SpainAbstract
This study investigates the fluid dynamic performance and flow behavior of a reversible S-cambered airfoil designed to enhance aerodynamic adaptability in variable operating conditions. Numerical simulations were performed using computational fluid dynamics (CFD) to evaluate lift, drag, and pressure distribution over a range of angles of attack and Reynolds numbers. The results demonstrate that the reversible S-camber configuration significantly improves lift-to-drag ratios compared to conventional symmetric and cambered airfoils, particularly in transitional flow regimes. Flow visualization revealed complex vortex dynamics and delayed flow separation under reversing camber conditions, contributing to improved stall characteristics. These findings indicate that reversible S-cambered airfoils hold strong potential for applications requiring rapid aerodynamic reconfiguration, such as unmanned aerial vehicles (UAVs) and morphing wing systems. Future work will focus on experimental validation and structural integration strategies for real-world implementation.
Keywords
Reversible airfoil, S-camber, fluid dynamics
References
Abdolmaleki, M., Afshin, H., & Farhanieh, B. (2019). Performance analysis of elliptic-profile airfoil cascade for designing reversible axial flow fans. AIAA Journal, 57(4), 1492–1501. https://doi.org/10.2514/1.J057843
Benisek, M. H., Cantrak, D. S., Ilic, D. B., & Jankovic, N. Z. (2020). New design of the reversible jet fan. Processes, 8(12), 1671. https://doi.org/10.3390/pr8121671
Buchwald, P., Vogt, D. M., Grilliat, J., Laufer, W., Schmitz, M. B., Lucius, A., & Schneider, M. (2018). Aeroacoustic analysis of low-speed axial fans with different rotational speeds in the design point. Journal of Engineering for Gas Turbines and Power Transactions, 140(5), 052601. https://doi.org/10.1155/1.4038122
Chacko, B., Balabaskaran, V., Tulapurkara, E. G., & Aswathanarayana, P. A. (1992). Effect of thickness distribution on performance of S-cambered profiles. Journal of Energy Engineering, 118(3), 164–179. https://doi.org/10.1061/(ASCE)0733-9402(1992)118:3(164)
Chacko, B., Balabaskaran, V., Tulapurkara, E. G., & Radha Krishna, H. C. (1994). Performance of S-cambered profiles with cut-off trailing edges. Journal of Fluids Engineering Transactions, 116(3), 522–527. https://doi.org/10.1115/1.2910308
Garcia-Sagrado, A., & Hynes, T. (2011). Wall pressure sources near an airfoil trailing edge under turbulent boundary layers. Journal of Fluids and Structures, 30(4), 3–34. https://doi.org/10.1016/j.jfluidstructs.2011.12.007
Guo, B., Wang, D. Z., Zhou, X., Shi, W. C., & Jing, F. M. (2019). Performance evaluation of a tidal current turbine with bidirectional symmetrical foils. Water, 12(1), 22. https://doi.org/10.3390/w12010022
Huang, X., Albers, M., Meysonnat, P. S., Meinke, M., & Schröder, W. (2020). Analysis of the effect of freestream turbulence on dynamic stall of wind turbine blades. International Journal of Heat and Fluid Flow, 85, 108668. https://doi.org/10.1016/j.ijheatfluidflow.2020.108668
Köktürk, T. (2005). Design and performance analysis of a reversible axial flow fan (Master’s thesis). Graduate School of Natural and Applied Sciences, Middle East Technical University.
Li, J. Y., Guo, P. H., Xi, G., & Chen, W. W. (2011). Efficiency enhancement mechanisms of a new type of full reversible axial-flow fan. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 225(4), 467–480. https://doi.org/10.1177/0957650911399036
Ma, P. F., & Wang, J. (2017). An analysis on the flow characteristics of bi-directional axial-flow pump under reverse operation. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 231(3), 239–249. https://doi.org/10.1177/0957650917695447
Ma, P. F., Wang, J., & Li, H. (2014). Numerical analysis of pressure pulsation for a bidirectional pump under positive and reverse operation. Advances in Mechanical Engineering, 6(8), 730280. https://doi.org/10.1155/2014/730280
Ma, P. F., Wang, J., & Wang, H. F. (2018). Investigation of performances and flow characteristics of two bi-directional pumps with different airfoil blades. Science China Technological Sciences, 61(10), 1588–1599. https://doi.org/10.1007/s11431-017-9195-x
Madhusudn, R., Narayana, P. A. A., Balabaskaran, V., & Tulapurkara, E. G. (1994). Boundary layer studies over an S-blade. Fluid Dynamics Research, 14(5), 241–258. https://doi.org/10.1016/0169-5983(94)90034-5
Matveev, K. I., Wheeler, M. P., & Xing, T. (2019). Numerical simulation of air ventilation and its suppression on inclined surface-piercing hydrofoils. Ocean Engineering, 175, 251–261. https://doi.org/10.1016/j.oceaneng.2019.02.040
Meng, F., Yuan, S. Q., & Li, Y. J. (2018). Fluid–structure coupling analysis of impeller in unstable region for a reversible axial-flow pump device. Advances in Mechanical Engineering, 10(3), 1–10. https://doi.org/10.1177/1687814017751762
Moisel, C., & Carolus, T. H. (2016). A facility for testing the aerodynamic and acoustic performance of bidirectional air turbines for ocean wave energy conversion. Renewable Energy, 86, 1340–1352. https://doi.org/10.1016/j.renene.2015.09.062
Ohtake, T., Nakae, Y., & Motohashi, T. (2007). Nonlinearity of the aerodynamic characteristics of NACA0012 airfoil at low Reynolds numbers. Journal of the Japan Society for Aeronautical and Space Sciences, 55(9), 439–445. https://doi.org/10.2322/jjsass.55.439
Oro, J. M. F., Díaz, K. M. A., Morros, C. S., & Ballesteros-Tajadura, R. (2009). Impact of the tip vortex on the passage flow structures of a jet fan with symmetric blades. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 223(2), 141–155. https://doi.org/10.1243/09576509JPE684
Premkumar, M., & Chatterjee, D. (2015). Computational analysis of flow over a cascade of S-shaped hydrofoil of fully reversible pump-turbine used in extracting tidal energy. Renewable Energy, 77, 240–249. https://doi.org/10.1016/j.renene.2014.12.019
Premkumar, T. M., & Chatterjee, D. (2008). Numerical study of turbulent flow over an S-shaped hydrofoil. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 222(9), 1717–1734. https://doi.org/10.1243/09544062JMES929
Premkumar, T. M., Kumar, P., & Chatterjee, D. (2014). Cavitation characteristics of S-blade used in fully reversible pump-turbine. Journal of Fluids Engineering, 136(5), 051101. https://doi.org/10.1115/1.4026441
Ramachandran, R., Krishna, H. C., & Narayana, P. A. (1986). Cascade experiments over ‘S’ blade profiles. Journal of Energy Engineering, 112(1), 37–50. https://doi.org/10.1061/(ASCE)0733-9402(1986)112:1(37)
Siemens Digital Industries Software. (2022). Simcenter STAR-CCM+ user guide (Version 17.04). Plano, TX: Siemens.
Spasic, Z., Jovanovic, M., & Bogdanovic-Jovanovic, J. (2018). Design and performance of low-pressure reversible axial fan with doubly curved profiles of blades. Journal of Mechanical Science and Technology, 32(8), 3707–3712. https://doi.org/10.1007/s12206-018-0723-6
Spasic, Z., Jovanovic, M., Bogdanovic-Jovanovic, J., & Milanovic, S. (2020). Numerical investigation of the influence of the doubly curved blade profiles on the reversible axial fan characteristics. Facta Universitatis Series: Mechanical Engineering, 18(1), 57–68. https://doi.org/10.22190/FUME171128002S
Spasic, Z. T., Milanovic, S., Sustersic, V. M., & Nikolic, B. D. (2012). Low-pressure reversible axial fan with straight profile blades and relatively high efficiency. Thermal Science, 16(S2), 593–603. https://doi.org/10.2298/TSCI120503194S
Thakker, A., & Abdulhadi, R. (2008). The performance of Wells turbine under bi-directional airflow. Renewable Energy, 33, 2467–2474. https://doi.org/10.1016/j.renene.2008.02.013
Tsuru, W., Kinoue, Y., Murakami, T., Sakaguchi, M., Shiomi, N., & Takao, M. (2023). Design method for a bidirectional ducted tidal turbine. Journal of Aerospace Engineering, 36(2), 04025006. https://doi.org/10.1061/(ASCE)AS.1943-5525.0001591
Article Statistics
Downloads
Copyright License
Copyright (c) 2025 Prof. Anna Müller, Dr. Alejandro Torres

This work is licensed under a Creative Commons Attribution 4.0 International License.