Articles
| Open Access |
https://doi.org/10.55640/
Assessing the Fidelity of Published Liquid-Liquid Equilibrium Correlation Parameters: An Ongoing Scrutiny
Dr. Nina T. Velasquez , Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USAAbstract
This study critically evaluates the fidelity of published correlation parameters used in modeling liquid-liquid equilibrium (LLE) systems. As accurate phase behavior predictions are vital for designing separation processes, particularly in solvent extraction and chemical engineering applications, the reliability of reported parameters—often derived from empirical or semi-empirical models—remains under scrutiny. Through a comprehensive review and re-evaluation of selected literature datasets, this research identifies discrepancies between experimental data and model predictions, highlighting instances of poor parameter reproduction, inconsistencies in data sources, and gaps in methodological transparency. The analysis underscores the importance of standardization, reproducibility, and rigorous validation in publishing LLE parameters. Ultimately, the findings advocate for enhanced peer-review protocols and the adoption of open-access databases to improve trust and utility in LLE modeling across academia and industry.
Keywords
Liquid-liquid equilibrium, correlation parameters, model fidelity
References
Marcilla, A.; Reyes-Labarta, J. A.; Olaya, M. M. Should we trust all the published LLE correlation parameters in phase equilibria? Necessity of their assessment prior to publication. Fluid Phase Equilib. 2017, 433, 243−252.
Treybal, R. E. Liquid Extraction, 2nd ed.; McGraw-Hill: New York, 1963.
Labarta, J. A.; Olaya, M. M.; Marcilla, A. GMcal_TieLinesLL: Graphical User Interface (GUI) for Topological Analysis of Calculated GM Surfaces and Curves... Institutional Repository (RUA) 2015−2023. Publicly available online at: http://hdl.handle.net/10045/51725.
Marcilla, A.; Olaya, M. M.; Reyes-Labarta, J. A. Ensuring that correlation parameters for liquid-liquid equilibrium produce the right results. J. Chem. Eng. Data 2018, 63, 1133−1134.
Saad, M.; Asadzadeh, B.; Uusi-Kyyny, P.; Alopaeus, V. Utilizing environment-friendly eugenol as a diluent with trioctylamine for the reactive extraction of aqueous levulinic acid. Sci. Rep. 2024, 14, 22389.
Sander, A.; Petračić, A.; Rogošić, M.; Župan, M.; Frljak, L.; Cvetnić, M. Feasibility of different methods for separating n-hexane and ethanol. Separations 2024, 11, 151.
Moreira, L. C.; de Araujo, P. C. C.; de P Soares, R.; Follegatti-Romero, L. A. Liquid−liquid equilibrium for 2-methylfuran (biofuel) + alcohols + water systems: Experiments and thermodynamic modeling. Ind. Eng. Chem. Res. 2024, 63, 14417−14429.
Carbonell-Hermida, P.; Marcilla, A.; Olaya, M. M. Necessity of imposing total miscibility for certain binary pairs in LLE data correlations. Fluid Phase Equilib. 2021, 538, 112985.
Labarta, J. A.; Olaya, M. M.; Marcilla, A. What does the NRTL model look like? Determination of boundaries for different fluid phase equilibrium regions. AIChE J. 2022, 68, e17805.
ASPEN-PLUS Chemical Process Optimization Software; Aspen Technology Inc: Cambridge, MA.
Marcilla, A.; Carbonell-Hermida, P.; Olaya, M. M. Phase stability analysis. A consistent guide for drawing maps for safe travelling through the world of azeotropy and miscibility. Ind. Eng. Chem. Res. 2024, 63, 7926−7938.
Gilani, H. G.; Gilani, A. G.; Sangashekan, M. Tie-line data for the aqueous solutions of phenol with organic solvents at T = 298.2 K. J. Chem. Thermodyn. 2013, 58, 142−148.
Arlt, W.; Macedo, M. E. A.; Rasmussen, P.; Sorensen, J. M. DECHEMA Chemistry Data Series, Vol. V, Liquid Equilibrium Data Collection; DECHEMA: Frankfurt, Germany.
Lin, H. M.; Hong, G. B.; Yeh, C. E.; Lee, M. J. Liquid-liquid equilibria for ternary mixtures of water + ethanol with 1-hexanol, butyl propionate, or ethyl caproate. J. Chem. Eng. Data 2003, 48, 587−590.
Abadie, J.; Carpentier, J. Generalization of Wolfe’s reduced gradient method for the case of nonlinear constraints in optimization; Academic: New York, 1969.
Abadie, J. Application of the GRG algorithm to optimal control problems in integer and nonlinear programming.; North-Holland: Amsterdam, The Netherlands, 1970.
Article Statistics
Downloads
Copyright License
Copyright (c) 2025 Dr. Nina T. Velasquez

This work is licensed under a Creative Commons Attribution 4.0 International License.