Articles | Open Access | https://doi.org/10.55640/ijme-04-01-06

IMPACT OF COMPOSITE MATERIALS ON AIRCRAFT WEIGHT REDUCTION, FUEL EFFICIENCY, AND PERFORMANCE IN COMMERCIAL AVIATION

Hami Asad Rafi , Bangladesh Army University Of Science And Technology (Baust), Department Of Mechanical Engineering, Saidpur Cantonment, Saidpur, 5311, Nilphamari, Bangladesh

Abstract

The adoption of composite materials in commercial aviation has profoundly transformed aircraft design and performance. This research explores the impact of composites, particularly Carbon Fiber Reinforced Polymers (CFRP) and Glass Fiber Reinforced Polymers (GFRP), on aircraft weight reduction, fuel efficiency, and operational performance. By replacing traditional materials such as aluminum, composite materials enable a 15-30% reduction in structural weight, contributing to a 20-25% improvement in fuel efficiency. Models like the Boeing 787 and Airbus A350 exemplify these advancements, achieving enhanced payload capacity, extended range, and reduced environmental impact. Despite challenges such as high manufacturing costs and complex repair processes, the long-term economic and ecological benefits—lower operational expenses and reduced carbon emissions—underscore the importance of composites in sustainable aviation. This study underscores the necessity for further innovation in composite technologies to optimize performance and cost-effectiveness in the evolving landscape of commercial aviation.

Keywords

Composite Materials, Carbon Fiber Reinforced Polymers (CFRP), Aircraft Weight Reduction

References

Ahmed, A., Rahman, S., Islam, M., Chowdhury, F., & Badhan, I. A. (2023). CHALLENGES AND OPPORTUNITIES IN IMPLEMENTING MACHINE LEARNING FOR HEALTHCARE SUPPLY CHAIN OPTIMIZATION: A DATA-DRIVEN EXAMINATION. International journal of business and management sciences, 3(07), 6-31.

AL-Oqla, F.M. and Hayajneh, M.T. (2023). Advanced synthetic and biobased composite materials in sustainable applications: a comprehensive review. Emergent Materials. doi:https://doi.org/10.1007/s42247-023-00478-z.

Badhan, I. A., Neeroj, M. H., & Chowdhury, I. (2024). THE EFFECT OF AI-DRIVEN INVENTORY MANAGEMENT SYSTEMS ON HEALTHCARE OUTCOMES AND SUPPLY CHAIN PERFORMANCE: A DATA-DRIVEN ANALYSIS. Frontline Marketing, Management and Economics Journal, 4(11), 15-52.

Badhan, I. A., Neeroj, M. H., & Rahman, S. (2024). CURRENCY RATE FLUCTUATIONS AND THEIR IMPACT ON SUPPLY CHAIN RISK MANAGEMENT: AN EMPIRICAL ANALYSIS. International journal of business and management sciences, 4(10), 6-26.

Bai, J. (2024). The Role of Carbon Fiber Composite Materials in Making Electric Aircraft a Reality. E3S Web of Conferences, 553, pp.02019–02019. doi:https://doi.org/10.1051/e3sconf/202455302019.

Bhong, M., Khan, T.K.H., Devade, K., Vijay Krishna, B., Sura, S., Eftikhaar, H.K., Pal Thethi, H. and Gupta, N. (2023). Review of composite materials and applications. Materials Today: Proceedings. [online] doi:https://doi.org/10.1016/j.matpr.2023.10.026.

Chen, C., Randall, R. and Dmytro Tiniakov (2024). Composite Materials: Application Specifics for Transport Category Aircraft Wings. IntechOpen eBooks. doi:https://doi.org/10.5772/intechopen.1004217.

Desai, Ms.K. (2024). Research Methodology. doi:https://doi.org/10.59646/rm/141.

Dev, M. (2024). Research Methodology: Methods And Techniques. doi:https://doi.org/10.59646/rmmt/171.

Falzon, B. and Pierce, R.H. (2020). Thermosetting Composite Materials in Aerostructures. pp.57–86. doi:https://doi.org/10.1007/978-3-030-35346-9_3.

Fantuzzi, N., Dib, A., Babamohammadi, S., Campigli, S., Benedetti, D. and Agnelli, J. (2024). Mechanical analysis of a carbon fibre composite woven composite laminate for ultra-light applications in aeronautics. Composites Part C: Open Access, [online] 14, p.100447. doi:https://doi.org/10.1016/j.jcomc.2024.100447.

Gao, Y., Li, Z., Wei, X., Du, Y., Zhou, Z. and Xiong, J. (2024). Advanced lightweight composite shells: Manufacturing, mechanical characterizations and applications. Thin-Walled Structures, 204, p.112286. doi:https://doi.org/10.1016/j.tws.2024.112286.

Giorgio, G.D. (2023). Safety and Accidents Involving Aircraft Manufactured from Polymer Composite Materials: A Review. Aerotecnica Missili & Spazio, 102(4), pp.337–353. doi:https://doi.org/10.1007/s42496-023-00170-9.

Hasanzadeh, M. and Zadeh, S.M. (2022). Advanced Fibrous Composites for Aircraft Application. Sustainable Aviation, pp.89–112. doi:https://doi.org/10.1007/978-3-030-91873-6_4.

Kausar, A. (2023). Aeronautical composites and materials. Elsevier eBooks, pp.1–21. doi:https://doi.org/10.1016/b978-0-323-99657-0.00016-8.

Khan, J.A., Raman, A.M., Sambamoorthy, N. and Prashanth, K.C. (2023). Research Methodology (Methods, Approaches And Techniques). [online] SAN INTERNATIONAL SCIENTIFIC PUBLICATIONS. doi:https://doi.org/10.59646/rmmethods/040.

Kilimtzidis, S. and Kotzakolios, A. (2022). Efficient structural optimisation of composite materials aircraft wings. Composite Structures, p.116268. doi:https://doi.org/10.1016/j.compstruct.2022.116268.

Kılkış, Ş. and Kılkış, Ş. (2019). A simplistic flight model for exergy embodiment of composite materials towards nearly-zero exergy aviation. International Journal of Sustainable Aviation, 5(1), p.19. doi:https://doi.org/10.1504/ijsa.2019.10021490.

Koptev, A.N. and Tluustenko, S.F. (2023). DEVELOPMENT OF A METHODOLOGY FOR CONSTRUCTING AND RESEARCHING TECHNOLOGICAL SYSTEMS IN THE CONTEXT OF AUTOMATION OF THE PRODUCTION OF AIRCRAFT. Izvestiya of Samara Scientific Center of the Russian Academy of Sciences, 25(1), pp.43–47. doi:https://doi.org/10.37313/1990-5378-2023-25-1-43-47.

Li, Y. (2024). The Methodology and Methods of the Research. pp.47–59. doi:https://doi.org/10.1007/978-981-99-8624-8_3.

Liu, X., Bai, C., Xi, X., Zhou, S., Zhang, X., Li, X., Ren, Y., Yang, J. and Yang, X. (2024). Impact response and crashworthy design of composite fuselage structures: An overview. Progress in Aerospace Sciences, [online] p.101002. doi:https://doi.org/10.1016/j.paerosci.2024.101002.

Mezzacasa, R., Segura, M., X. Irastorza, I. Harismendy and H. Sehrschon (2022). Flexible, efficient and automated fast manufacturing of high performance composite parts. Revista de Materiales Compuestos. doi:https://doi.org/10.23967/r.matcomp.2022.03.005.

Muhammad, A., Rezaur, M., Muhammad, R.B. and Bakri, K.B. (2021). Applications of sustainable polymer composites in automobile and aerospace industry. Advances in Sustainable Polymer Composites, [online] pp.185–207. doi:https://doi.org/10.1016/B978-0-12-820338-5.00008-4.

Nishan, A., Raju, S. T. U., Hossain, M. I., Dipto, S. A., Uddin, S. T., Sijan, A., ... & Khan, M. M. H. (2024). A continuous cuffless blood pressure measurement from optimal PPG characteristic features using machine learning algorithms. Heliyon, 10(6). https://doi.org/10.1016/j.heliyon.2024.e27779

Ojoboh, T.M. and Igben, H.G.O. (2024). Impact of Research Methodology on Data Quality and Research Findings. JPPUMA: Jurnal Ilmu Pemerintahan dan Sosial Politik UMA (Journal of Governance and Political Social UMA)/JPPUMA (Jurnal Ilmu Pemerintahan dan Sosial Politik UMA) (Journal of Governance and Political Social UMA), 12(1), pp.34–42. doi:https://doi.org/10.31289/jppuma.v12i1.11793.

Öztürk, F. and Çobanoğlu, M. (2023). Recent advancements in thermoplastic composite materials in aerospace industry. Journal of Thermoplastic Composite Materials. doi:https://doi.org/10.1177/08927057231222820.

Parveez, B., Kittur, M.I., Badruddin, I.A., Kamangar, S., Hussien, M. and Umarfarooq, M.A. (2022). Scientific Advancements in Composite Materials for Aircraft Applications: A Review. Polymers, [online] 14(22), p.5007. doi:https://doi.org/10.3390/polym14225007.

Prabhavathy, A. and Morrin, M. (2024). Research Methodology: A Step-By-Step Guide For Beginners. doi:https://doi.org/10.59646/rm/187.

Raju, S. T. U., Dipto, S. A., Hossain, M. I., Chowdhury, M. A. S., Haque, F., Nashrah, A. T., ... & Hashem, M. M. A. (2024). DNN-BP: a novel framework for cuffless blood pressure measurement from optimal PPG features using deep learning model. Medical & Biological Engineering & Computing, 1-22. https://www.researchsquare.com/article/rs-2624386/v1

Samanth, M. (2024). A Brief Introduction to Research Methodology. SSRN Electronic Journal. doi:https://doi.org/10.2139/ssrn.4866355.

Samir, S., Gewali, J., Pd, Singh, T., Debbarma, K., Mazumdar, S., Lone, F. and Daniella, U., Ed (2024). Introduction to Polymer Composites in Aerospace. doi:https://doi.org/10.63015/4e-2431.1.4.

Upadhya, A.R. (2023). Composite Airframes-Opportunities, Options and Issues. Journal of Aerospace Sciences and Technologies, [online] pp.5–16. doi:https://doi.org/10.61653/joast.v64i1.2012.409.

Vlasova, V. (2019). Using composite materials in aircraft. [online] Available at: 10.1063/1.5133186.

Wu, M., Sadhukhan, J., Murphy, R., Bharadwaj, U. and Cui, X. (2023). A novel life cycle assessment and life cycle costing framework for carbon fibre-reinforced composite materials in the aviation industry. The International Journal of Life Cycle Assessment. doi:https://doi.org/10.1007/s11367-023-02164-y.

Wu, Y. (2024). Application of carbon fiber composite materials in aircraft. Applied and Computational Engineering, [online] 61(1), pp.245–248. doi:https://doi.org/10.54254/2755-2721/61/20240969.

Article Statistics

Downloads

Download data is not yet available.

Copyright License

Download Citations

How to Cite

IMPACT OF COMPOSITE MATERIALS ON AIRCRAFT WEIGHT REDUCTION, FUEL EFFICIENCY, AND PERFORMANCE IN COMMERCIAL AVIATION. (2024). International Journal of Mechanical Engineering, 4(01), 21-35. https://doi.org/10.55640/ijme-04-01-06