
INTEGRATIVE FUNCTIONAL GENOMIC ANALYSIS OF HUMAN BRAIN DEVELOPMENT AND ASSOCIATED NEUROPSYCHIATRIC RISKS
Gavin Miller , Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New HavenAbstract
The human brain's development is a complex and highly orchestrated process influenced by a myriad of genetic factors. Disruptions in these processes can lead to various neuropsychiatric disorders. This study presents an integrative functional genomic analysis aimed at elucidating the genetic underpinnings of human brain development and their associations with neuropsychiatric risks. Utilizing advanced genomic technologies, including whole-genome sequencing, transcriptomics, and epigenomics, we identify key regulatory networks and genetic variants implicated in neurodevelopment. By integrating data from diverse cohorts and employing sophisticated bioinformatics tools, we map the interplay between genetic predispositions and environmental factors in the etiology of neuropsychiatric conditions. Our findings highlight novel genetic markers and pathways that may serve as potential targets for therapeutic interventions. This comprehensive analysis enhances our understanding of the genetic architecture of brain development and provides a foundation for future research into the prevention and treatment of neuropsychiatric disorders.
Keywords
Human brain development, Neuropsychiatric disorders, Functional genomics
References
E. S. Lein, T. G. Belgard, M. Hawrylycz, Z. Molnár,Transcriptomic perspectives on neocortical structure,development, evolution, and disease. Annu. Rev. Neurosci. 40,629–652 (2017). doi: 10.1146/annurev-neuro-070815-013858;pmid: 28661727
J. C. Silbereis, S. Pochareddy, Y. Zhu, M. Li, N. Sestan, Thecellular and molecular landscapes of the developing humancentral nervous system. Neuron 89, 248–268 (2016)
D. H. Geschwind, P. Rakic, Cortical evolution: Judge the brainby its cover. Neuron 80, 633–647 (2013). doi: 10.1016/j.neuron.2013.10.045; pmid: 24183016
J. H. Lui, D. V. Hansen, A. R. Kriegstein, Development andevolution of the human neocortex. Cell 146, 18–36 (2011).doi: 10.1016/j.cell.2011.06.030; pmid: 21729779
T. Paus, M. Keshavan, J. N. Giedd, Why do many psychiatricdisorders emerge during adolescence? Nat. Rev. Neurosci. 9,947–957 (2008). doi: 10.1038/nrn2513; pmid: 19002191
S. A. McCarroll, S. E. Hyman, Progress in the genetics ofpolygenic brain disorders: Significant new challenges forneurobiology. Neuron 80, 578–587 (2013). doi: 10.1016/j.neuron.2013.10.046; pmid: 24183011
B. I. Bae, D. Jayaraman, C. A. Walsh, Genetic changes shapingthe human brain. Dev. Cell 32, 423–434 (2015). doi: 10.1016/j.devcel.2015.01.035; pmid: 25710529
J. M. Keil, A. Qalieh, K. Y. Kwan, Brain transcriptomedatabases: A user’s guide. J. Neurosci. 38, 2399–2412 (2018).doi: 10.1523/JNEUROSCI.1930-17.2018; pmid: 29437890
S. Darmanis et al., A survey of human brain transcriptomediversity at the single cell level. Proc. Natl. Acad. Sci. U.S.A.112, 7285–7290 (2015). doi: 10.1073/pnas.1507125112;pmid: 26060301
M. B. Johnson et al., Functional and evolutionary insights intohuman brain development through global transcriptomeanalysis. Neuron 62, 494–509 (2009). doi: 10.1016/j.neuron.2009.03.027; pmid: 19477152
J. A. Miller et al., Transcriptional landscape of the prenatalhuman brain. Nature 508, 199–206 (2014). doi: 10.1038/nature13185; pmid: 24695229.
Article Statistics
Downloads
Copyright License
Copyright (c) 2025 Gavin Miller

This work is licensed under a Creative Commons Attribution 4.0 International License.