Articles | Open Access |

Causal-Inference Analytics for Detecting Hidden Algorithmic Interventions in Enterprise SaaS Platforms: A Quantitative Framework and Empirical Evaluation

Babajide J. Sunmonu , Mddus Limited, Glasgow, United Kingdom
Obaloluwa D Olaniran , Alabama State University, Montgomery, USA
Tawakalitu Abereijo , North Carolina A&T State University, Greensboro, USA

Abstract

Enterprise Software-as-a-Service (SaaS) platforms increasingly rely on complex algorithmic systems that dynamically adjust user experiences, resource allocations, and operational parameters. However, many algorithmic interventions occur without explicit documentation, creating opacity that undermines system reliability, auditability, and trust. This paper develops and validates a quantitative framework for detecting hidden algorithmic interventions using causal inference analytics. We evaluate five causal discovery algorithms, ETIO, Bootstrap-augmented PCMCI+, Differentiable Causal Discovery, Granger Causality, and an Ensemble method, across three intervention scenarios: personalization algorithm changes, resource allocation policy shifts, and microservice configuration modifications. Our empirical results demonstrate that causal inference methods achieve precision rates of 82-94% and recall rates of 78-91% in detecting hidden interventions, significantly outperforming correlation-based baselines. Time-series causal methods excel in temporal scenarios, while ensemble approaches achieve optimal overall performance with F1-scores of 0.89-0.92. This work bridges the gap between causal inference theory and enterprise operational practice, providing deployment-ready guidelines for SaaS operators and establishing reproducible benchmarks for future research.

Keywords

Causal inference, algorithmic interventions, SaaS platforms, causal discovery, enterprise analytics, root cause analysis

References

Afriyie, D. (2020). Leveraging predictive people analytics to optimize workforce mobility, talent retention, and regulatory compliance in global enterprises [Working paper]. ResearchGate. https://www.researchgate.net/profile/Derrick-Afriyie/publication/394435648

Almulla, S., Iraqi, Y., & Wolthusen, S. D. (2015). Inferring relevance and presence of evidence in service-oriented and SaaS architectures. In 2015 IEEE International Symposium on Computers and Communications (ISCC) (pp. 506-511). IEEE. https://doi.org/10.1109/ISCC.2015.7405509

Borboudakis, G., & Tsamardinos, I. (2016). Towards robust and versatile causal discovery for business applications. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1435-1444). ACM. https://doi.org/10.1145/2939672.2939872

Debeire, K., Runge, J., Gerhardus, A., & Eyring, V. (2021). Bootstrap aggregation and confidence measures to improve time series causal discovery. arXiv preprint arXiv:2306.08946v2. https://arxiv.org/abs/2306.08946v2

Duong, T. D., Li, Q., & Xu, G. (2021). Stochastic intervention for causal effect estimation. arXiv preprint arXiv:Artificial Intelligence. https://scispace.com/papers/stochastic-intervention-for-causal-effect-estimation-4o4dtdiefp

Faria, G. R. A., Martins, A. F. T., & Figueiredo, M. A. T. (2021). Differentiable causal discovery under latent interventions. arXiv preprint arXiv:2203.02336v1. https://arxiv.org/abs/2203.02336v1

Kiciman, E., & Thelin, J. (2018). Answering what if, should I, and other expectation exploration queries using causal inference over longitudinal data. In Proceedings of the Conference (pp. 1-10). https://scispace.com/papers/answering-what-if-should-i-and-other-expectation-exploration-1t6ei70p23

Lin, A. Y., Merchant, A., Sarkar, S. K., & D'Amour, A. (2019). Universal causal evaluation engine: An API for empirically evaluating causal inference models. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1-9). ACM. https://scispace.com/papers/universal-causal-evaluation-engine-an-api-for-empirically-4iee57lzkd

Meng, Y., Zhang, S., Sun, Y., Zhang, R., & Hu, Z. (2020). Localizing failure root causes in a microservice through causality inference. In 2020 IEEE/ACM International Workshop on Quality of Service (IWQoS) (pp. 1-10). IEEE. https://doi.org/10.1109/IWQOS49365.2020.9213058

Thalheim, J., Rodrigues, A. W. D. O., Akkus, I. E., Bhatotia, P., & Chen, R. (2017). Sieve: Actionable insights from monitored metrics in distributed systems. In Proceedings of the ACM Conference (pp. 1-14). ACM. https://doi.org/10.1145/3135974.3135977

Wang, P., Xu, J., Ma, M., Lin, W., & Pan, D. (2018). CloudRanger: Root cause identification for cloud native systems. In 2018 IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (pp. 492-502). IEEE. https://doi.org/10.1109/CCGRID.2018.00076

Wong, J. (2020). Computational causal inference. arXiv preprint arXiv: Computation. https://scispace.com/papers/computational-causal-inference-11aj8o7gfl

Xu, Y., Zhang, X., Luo, C., Qin, S., & Pandey, R. (2021). CARE: Infusing causal aware thinking to root cause analysis in cloud system. In Proceedings of the ACM Conference (pp. 1-10). ACM. https://doi.org/10.1145/3447851.3458737

Yoganarasimhan, H., & Barzegary, E. (2019). Design and evaluation of personalized targeting policies: Application to free trials [Working paper]. University of Washington. http://faculty.washington.edu/hemay/Design_Evaluation_November_2019.pdf

Yoganarasimhan, H., Barzegary, E., & Pani, A. (2020). Design and evaluation of personalized free trials. arXiv preprint arXiv:Machine Learning. https://scispace.com/papers/design-and-evaluation-of-personalized-free-trials-5ephy2ggoc

Zhang, Y., Guan, Z., Qian, H., Xu, L., & Liu, H. (2021). CloudRCA: A root cause analysis framework for cloud computing platforms. In Proceedings of the 30th ACM International Conference on Information and Knowledge Management (pp. 4373-4382). ACM. https://doi.org/10.1145/3459637.3481903

Article Statistics

Downloads

Download data is not yet available.

Copyright License

Download Citations

How to Cite

Babajide J. Sunmonu, Obaloluwa D Olaniran, & Tawakalitu Abereijo. (2023). Causal-Inference Analytics for Detecting Hidden Algorithmic Interventions in Enterprise SaaS Platforms: A Quantitative Framework and Empirical Evaluation. International Journal of Data Science and Machine Learning, 3(01), 31-41. https://www.academicpublishers.org/journals/index.php/ijdsml/article/view/9153