Articles
| Open Access | THE IMPORTANCE OF STUDYING THE FUNCTION IN STRENGTHENING STUDENTS' KNOWLEDGE OF TRIGONOMETRIC FUNCTIONS
Tashxodjayev Abdug‘affor Abdulmansur o‘g‘li , Qo‘qin Universiteti Raqamli texnologiyalar va matematika kafedrasi o‘qituvchisi Qo’qon, O’zbekistonAbstract
This article discusses the problem of determining the properties and graphing functions of the form , when there was a trigonometric function. As an example, the properties of functions a have been studied, and scientific and methodological conclusions have been made on these properties. To build the graphics functions used modern graphics programs GeoGebra and Maple.
Keywords
Function, complex function, quadratic function, trigonometric functions, function graphs.
References
G‘oziyev H. “Funksiyalar va grafiklar”. T. “Fan”. 1998.
Л.Я. Куликов. ”Алгебра и теория чисел” Москва. ”Высшая школа” 1979г.
Nuritdinov, J. T. (2021). ABOUT THE MINKOWSKI DIFFERENCE OF SQUARES ON A PLANE. Scientific reports of Bukhara State University, 5(3), 13-29.
Nuritdinov J. T. On Minkowski difference of triangles. Bull. Inst. Math., 2021, Vol.4, No6, pp. 50-57. [In Uzbek]
Mamatov M., Nuritdinov J. On the geometric properties of the Minkowski operator. International Journal of Applied Mathematics. Vol. 37. No 2. 2024. 175–185. ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version) doi: http://dx.doi.org/10.12732/ijam.v37i2.4
Mamatov M. and Nuritdinov J. (2022). Optimizing the Quality of Electric Lighting with the Use of Minkowski’s Geometric Difference. In Proceedings of the 3rd International Symposium on Automation, Information and Computing - Volume 1: ISAIC; ISBN 978-989-758-622-4, SciTePress, pages 751-756. DOI: 10.5220/0012046100003612
Apakov, Y.P., Mamajonov, S.M. Boundary-Value Problem for the Fourth-Order Equation with Multiple Characteristics in a Rectangular Domain // Journal of Mathematical Sciences. 2023, 272(2), p. 185-201.
Apakov, Y.P., Mamazhonov, S.M. Boundary Value Problem for an Inhomogeneous Fourth-Order Equation with Lower-Order Terms // Differential Equations. 2023, 59(2), p. 188-198.
Apakov, Y.P., Mamajonov, S.M. Boundary value problem for a inhomogeneous fourth order equation with constant coefficients // Chelyabinsk Physical and Mathematical Journal. 2023, 8(2), p. 157-172.
Article Statistics
Downloads
Copyright License

This work is licensed under a Creative Commons Attribution 4.0 International License.