Articles | Open Access |

SOLUTION OF THE CAUCHY PROBLEM FOR THE MULTIDIMENSIONAL GENERALIZED EULER–POISSON–DARBOUX EQUATION BY THE METHOD OF SPHERICAL MEANS

Karimov Shakhobiddin,Bogdan Anna , Faculty of Mathematics and Computer Science Fergana State University Fergana, Uzbekistan

Abstract

This article examines the solution of the Cauchy problem for the multidimensional generalized Euler-Poisson-Darboux equation using the method of spherical means. A special approach is employed, based on the expansion of the solution function into a series of spherical harmonics. The article details this approach and proposes an algorithm for its implementation. Numerical experiment results are also presented, demonstrating the effectiveness of the proposed method. Overall, the article constitutes a significant contribution to the study of multidimensional Euler-Poisson-Darboux equations and may be of interest to specialists in mathematics and physics.

Keywords

Euler-Poisson-Darboux equation, Cauchy problem, multidimensional generalization, method of spherical means, spherical harmonics, Fourier series, explicit solution, numerical modeling, solution stability, convergence, applications in physics, applications in mechanics, mathematical physics, partial differential equations, solution algorithm.

References

Euler Leonard. Integral calculus. -M.: GIFML, 1958. vol.3. 447 p.

Reimann B. Vercuch einer allgemeinen auffassung der integration und differentiation // Gessammelte Mathematische Werke. Leipzing: Teubner, 1876. P.331-334.

Poisson SD Memoire sur L'integration des equations lineaires aux differences partielles // J.l'Ecole Rog. Polytechn, 1823, n.12. P. 215-248.

Darboux G. Lecons sur la theory generale des surfaces et les applications geometriques du calcul infinitesimal. Paris: Gauthier-Villars. 1915. Vol.2.

Tricomi F. On linear equations of mixed type. M.:L.-Gostezizdat, 1947, 192 p.

Bitsadze A.V. Some classes of partial differential equations. M.: Nauka, 1981. 448 p.

Smirnov M.M. Degenerate elliptic and hyperbolic equations. M.: Nauka, 1966. 292 p.

Smirnov M.M. Mixed type equations. M.: Nauka, 1970. 295 p.

Weinstein A. Sur le probleme de Cauchy pour l'equation de Poisson et l'equation des ondes // CR Acad. Sci. Pris. 1952. T. 234. P. 2584-2585.

Weinstein A. Generalized axially symmetric potential theory // Bull. Amer. Math. Soc. 1953. Vol. 59? N 1. P. 20-38.

Weinstein A. On the wave equation and the equation of Euler-Poisson // Wave motion and vibration theory. Proc. Sympos. Appl. Math. NY: McGraw-Hill, 1954. Vol.5. P. 137-147.

Weinstein A. The generalized radiation problem and the Euler-Poisson-Darboux equation. // Summa Brasil Math. 1955. Vol. 3. P. 125-147.

Weinstein A. On a singular differential operator. //Ibid. 1960. T. 49. P. 359-365.

Kapilevich M.B. On one equation of mixed elliptic-hyperbolic type.//Mathematical collection. 1952. t.30 (72) No. 1 p. 11-38.

Karimov Sh.T. Cauchy problem for the multidimensional Euler - Poisson - Darboux equation with a spectral parameter. // Proceedings of the international scientific conference "'Partial differential equations and related problems of analysis and computer science.'" Tashkent. 2004.t.1 art.~234 - 235.

Young EC On a generalized Euler-Poisson-Darboux equation //J. Math. and Mech. 1969. Vol.18, N 12. P.1167-1175.

Diaz JB, Weinberger HF A solution of the singular initial value problem for the Euler-Poisson-Darboux equation // Proc. Amer. Math. Soc. 1953. Vol. 4, N 5. P. 703-715.

Blum EK The Euler-Poisson-Darboux equation in the exceptional cases //Proc. Amer. Math. Soc. 1954. Vol. 5, N 4. P. 511-520.

Blum EK: A uniqueness theorems for the Euler - Poisson - Darboux equation, Bull.Amer. Math. Soc.Abstract 59-4-350.

Bresters DW On the Euler - Poisson - Darboux equation. //SIAM J. Math. Anal. 1973. Vol. 4, N 1. P. 31.41.

Fox DW: The solution and Huygens' principle for a singular Cauchy problem, J.Math.Mech. 8 (1959), 197_220.

Kurant R. Partial differential equations. -M.; World, 1964. p. 830.

Evans LC Partial Differential Equation. AMS, Berkeley, 1997. 664 p.

Ilyin V.A., Poznyak E.G., Fundamentals of mathematical analysis, part I, II, M: “Nauka”, 1973.

Urinov AK, Karimov ST Solution of the Cauchy Problem for Generalized Euler-Poisson-Darboux Equation by the Method of Fractional Integrals. Progress in Partial Differential Equations. Springer International Publishing, (2013), 321-337.

Karimov ST The Cauchy Problem for the Iterated Klein–Gordon Equation with the Bessel Operator. Lobachevskii Journal of Mathematics, 41 (5), -2020, pp. 772 – 784.

Karimov ST, Shishkina EL Some methods of solution to the Cauchy problem for a inhomogeneous equation of hyperbolic type with a Bessel operator. Journal of Physics: Conference Series, 1203(1), -2019.

Urinov AK, Karimov ST On the Cauchy Problem for the Iterated Generalized Two-axially Symmetric Equation of Hyperbolic Type. Lobachevskii Journal of Mathematics, 41 (1), - 2020, pp. 102 - 110

Article Statistics

Downloads

Download data is not yet available.

Copyright License

Download Citations

How to Cite

SOLUTION OF THE CAUCHY PROBLEM FOR THE MULTIDIMENSIONAL GENERALIZED EULER–POISSON–DARBOUX EQUATION BY THE METHOD OF SPHERICAL MEANS. (2024). International Journal of Artificial Intelligence, 4(04), 284-292. https://www.academicpublishers.org/journals/index.php/ijai/article/view/944