Articles
| Open Access |
https://doi.org/10.55640/
MACHINE LEARNING MODELS FOR EARLY DETECTION OF CARDIOVASCULAR DISEASES
1Maxsudov Valijon Gafurjonovich, 1Normamatov Sardor Faxriddin ugli, 2Xikmatova Diyoraxon Fayzulla kizi , 1Associate Professor, Department of Biomedical Engineering, Informatics and Biophysics, Tashkent State Medical University, 2Medical prevention work, student of group 106-A, Tashkent State Medical UniversityAbstract
This study examines the use of machine learning (ML) models for the early detection of cardiovascular diseases (CVDs). Early diagnosis is critical for effective treatment, yet traditional methods may be limited in speed and accuracy. ML algorithms, including logistic regression, support vector machines, and neural networks, analyze patient data such as medical history, lab results, and imaging to identify risk patterns. These models enable personalized risk assessment, improve clinical decision-making, and support timely intervention. The study also addresses challenges such as data privacy, model interpretability, and integration into healthcare systems. Overall, ML provides a promising approach to enhance early detection and management of cardiovascular diseases.
Keywords
machine learning, cardiovascular diseases, early detection, predictive models, risk assessment, healthcare analytics, supervised learning, neural networks.
References
Bazarbayev, M. I., Bozarov, U. A., Maxsudov, V. G., & Ermetov, E. Y. (2023). Application of differential equations in the field of medicine. International Journal of Engineering Mathematics (Online), 5(1).
Maxsudov, V. G., Bazarbayev, M. I., Ermetov, E. Y., & Norbutayeva, M. Q. (2020). Types of physical education and the technologies of organization of matters in the modern education system. European Journal of Research and Reflection in Educational Sciences Vol, 8(9).
Махсудов, В. Г. (2017). Гармоник тебранишларни инновацион технологиялар асосида ўрганиш («Кейс-стади»,«Ассесмент»,«Венн диаграммаси» мисолида). Современное образование (Узбекистан), (7), 11-16.
Maxsudov, V. G. (2018). Improvement of the methodological basics of training of the section «Mechanical oscillations» in higher educational institutions (Doctoral dissertation, Dissertation.–Tashkent: 2018. https://scholar. google. com/citations).
Johnson, K. W., Torres Soto, J., Glicksberg, B. S., Shameer, K., Miotto, R., Ali, M., et al. (2018). Artificial intelligence in cardiology. Journal of the American College of Cardiology, 71(23), 2668–2679. https://doi.org/10.1016/j.jacc.2018.03.521
Dey, N., Ashour, A. S., & Balas, V. E. (Eds.). (2018). Smart medical data sensing and IoT systems design in healthcare. Springer.
Alaa, A. M., & van der Schaar, M. (2019). Predicting cardiovascular risk using electronic health records: A machine learning approach. IEEE Transactions on Biomedical Engineering, 66(5), 1403–1414. https://doi.org/10.1109/TBME.2018.2869745
Krittanawong, C., Johnson, K. W., Rosenson, R. S., Wang, Z., Aydar, M., & Baber, U. (2017). Machine learning prediction in cardiovascular diseases: A review. Current Opinion in Cardiology, 33(6), 583–589. https://doi.org/10.1097/HCO.0000000000000439
Deo, R. C. (2015). Machine learning in medicine. Circulation, 132(20), 1920–1930. https://doi.org/10.1161/CIRCULATIONAHA.115.001593
Rajkomar, A., Dean, J., & Kohane, I. (2019). Machine learning in medicine. New England Journal of Medicine, 380, 1347–1358. https://doi.org/10.1056/NEJMra1814259
Attia, Z. I., Kapa, S., Lopez-Jimenez, F., et al. (2019). Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram. Nature Medicine, 25, 70–74. https://doi.org/10.1038/s41591-018-0240-2
Choi, E., Bahadori, M. T., Schuetz, A., Stewart, W. F., & Sun, J. (2016). Doctor AI: Predicting clinical events via recurrent neural networks. Machine Learning for Healthcare Conference, 301–318.
Lipton, Z. C., Kale, D. C., Elkan, C., & Wetzel, R. (2016). Learning to diagnose with LSTM recurrent neural networks. arXiv:1511.03677.
Obermeyer, Z., & Emanuel, E. J. (2016). Predicting the future - Big data, machine learning, and clinical medicine. New England Journal of Medicine, 375, 1216-1219. https://doi.org/10.1056/NEJMms1606181.
Zuparov, I. B., Ibragimova, M. N., Norbutayeva, M. K., Otaxonov, P. E., Normamatov, S. F., Safarov, U. Q., & Maxsudov, V. G. (2023). Modern directions and perspectives of using medical information systems. Switzerland: Innovations in technology and science education, 1218-1233.
Maxsudov, V. G., Ermetov, E. Y., & Jo, Z. R. rayeva. Types of physical education and the technologies of organization of matters in the modern education system. Fan, ta‘lim va amaliyot integratsiyasi 2022. Vol. 4. P29-34.
Maxsudov, V. G. (2018). Improvement of the methodological basics of training of the section «Mechanical oscillations» in higher educational institutions (Doctoral dissertation, Dissertation.–Tashkent).
Article Statistics
Downloads
Copyright License

This work is licensed under a Creative Commons Attribution 4.0 International License.