Articles
| Open Access | LINEAR ISOMETRY ON REFLEXIVE STRONGLY FACIALLY SYMMETRIC SPACES
1Seypullaev J.X. 2Dilmuratov D. D. , 1,2Karakalpak State University named after BerdakhAbstract
In this paper, the isometry properties of SFS-spaces are studied. It is proved that a linear operator is a surjective isometry if and only if it maps the set of indecomposable geometric tripotents onto itself and preserves the orthogonality relations on the set of indecomposable geometric tripotents.
Keywords
strongly facially symmetric space, norm exposed face, geometric tripotent, geometric Peirce projections, surjective isometry.
References
Friedman Y., Russo B. A geometric spectral theorem // Quart. J. Math. Oxford Ser. Vol. 37. N. 147. 1986. P. 263-277.
Friedman Y., Russo B. Some affine geometric aspects of operator algebras // Pacific. J. Math. Vol. 137. No. 1. 1989. P. 123-144.
Neal M., Russo B. State space of JB* -triples // Math. Ann. Vol. 328. No. 4. 2004. P. 585-624.
Ibragimov M.M., Kudaybergenov K.K., Tleumuratov S.Zh., Seypullaev J.Kh.
Geometric Description of the Preduals of Atomic Commutative von Neumann Algebras // Mathematical Notes. Vol. 93. No. 5. 2013. P. 715-721.
Kudaybergenov K.K., Seypullaev J.Kh. Characterization of JBW-Algebras with Strongly Facially Symmetric Predual Space // Mathematical Notes. Vol. 107. No. 4. 2020. P. 600-608.
Ядгоров Н.Ж., Cейпуллаев Ж.Х. Геометрические свойства единичного шара рефлексивных сильно гранево симметричных пространств // Узб. матем. журн. – Ташкент, 2009. – №2. – С. 186-194.
Seypulaev J.X. Сharacterizations of geometric tripotents in reflexive complex SFS-spaces // Lobachevskii Journal of Mathematics. – 2019. – Vol. 40. № 12. – P. 2111-2115.
Article Statistics
Downloads
Copyright License

This work is licensed under a Creative Commons Attribution 4.0 International License.