
“HOW CAN MATHEMATICAL MODELS BE USED TO PREDICT THE PROGRESSION AND IMPACT OF CHRONIC DISEASES IN THE MEDICAL FIELD?”
Mohamed Chahine,Nikolaos Tzenios, Omasyarifa Binti Jamal Poh , Associate professor of the Biological and Chemical Technology, Kursk State Medical University, Kursk, Russian FederationAbstract
Worldwide, healthcare systems face challenges posed by persistent chronic diseases, which have a long-lasting effect on patient health and well-being. Precisely estimating and predicting the origin and impact of chronic diseases is essential for adequate management, funds allocation, and development of policies related to the disease. Mathematical modeling is an important tool for forecasting chronic disease progression, impact, and course. The current article examines several mathematical models, including compartmental, agent-based, and statistical models, emphasizing their distinctive qualities and uses. The models capture intricate relationships between disease-related variables, environmental effects, patient features, and medical therapies. Mathematical models that use data-driven parameter estimates and validation techniques can simulate disease dynamics, forecast patterns for the future, and highlight important variables. Furthermore, these models aid practitioners and other stakeholders in the medical field in decision-making regarding illness prevention, early detection, treatment plans, and allocation of resources. Importantly, mathematical models enhance initiatives' evaluation process and determine their cost-effectiveness. The models help reveal underlying mechanisms, advance our understanding of chronic diseases, and enlighten evidence-based medical procedures. The development of mathematical modeling opens up new possibilities for diagnosing and treating chronic diseases. However, data quality, model complexity, and model validation are the weak points of mathematical modeling. Therefore, it is important to discuss future paths and the potential influence of mathematical models on changing how the medical community approaches the management of chronic diseases.
Keywords
References
Ali, S. A., Soo, C., Agongo, G., Alberts, M., Amenga-Etego, L., Boua, R. P., Choudhury, A., Crowther N. J., Depuur, C., Gómez-Olivé F. X., Guiraud I., Haregu, T. N., Hazelhurst, S., Kahn, K., Khayeka-Wandabwa, C., Kyobutungi, C., Lombard, Z., Mashinya, F., Micklesfield, L., …. Ramsay, M. (2018). Genomic and environmental risk factors for cardiometabolic diseases in Africa: Methods used for Phase 1 of the AWI-Gen population cross-sectional study. Global Health Action, 11(sup2), 1507133. https://doi.org/10.1080/16549716.2018.1507133
Arcede, J. P., Caga-Anan, R. L., Mentuda, C. Q., &Mammeri, Y. (2020). Accounting for symptomatic and asymptomatic in a SEIR-type model of COVID-19. Mathematical Modelling of Natural Phenomena, 15, 34. https://doi.org/10.1051/mmnp/2020021
Arora, P., Boyne, D., Slater, J. J., Gupta, A., Brenner, D. R. & Druzdzel, M. J. (2019). Bayesian networks for risk prediction using real-world data: A tool for precision medicine. Value in Health, 22(4), 439-445. https://doi.org/10.1016/j.jval.2019.01.006
Asgari‐Targhi, A. & Klerman, E. B. (2019). Mathematical modeling of circadian rhythms. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 11(2), e1439. https://doi.org/10.1002/wsbm.1439
Atkins, K. E., Lafferty, E. I., Deeny, S. R., Davies, N. G., Robotham, J. V. & Jit, M. (2018). Use of mathematical modelling to assess the impact of vaccines on antibiotic resistance. The Lancet Infectious Diseases, 18(6), e204-e213. https://doi.org/10.1016/S1473-3099(17)30478-4
Bekiros, S. & Kouloumpou, D. (2020). SBDiEM: A new mathematical model of infectious disease dynamics. Chaos, Solitons & Fractals, 136, 109828. https://doi.org/10.1016/j.chaos.2020.109828
Brauer, F., Castillo-Chavez, C. & Feng, Z. (2019). Mathematical models in epidemiology. Springer.
Cassidy, R., Singh, N. S., Schiratti, P. R., Semwanga, A., Binyaruka, P., Sachingongu, N., Chama-Chiliba, C. M., Chalabi, Z., Borghi, J. & Blanchet, K. (2019). Mathematical modelling for health systems research: A systematic review of system dynamics and agent-based models. BMC Health Services Research, 19, 845. https://doi.org/10.1186/s12913-019-4627-7
Char, D. S., Abràmoff, M. D. & Feudtner, C. (2020). Identifying ethical considerations for machine learning healthcare applications. The American Journal of Bioethics, 20(11), 7-17. https://doi.org/10.1080/15265161.2020.1819469
Chiesa, M., Maioli, G., Colombo, G. I. & Piacentini, L. (2020). GARS: Genetic algorithm for the identification of a robust subset of features in high-dimensional datasets. BMC Bioinformatics, 21, 54. https://doi.org/10.1186/s12859-020-3400-6
Clarke, M. A. & Joshu, C. E. (2017). Early life exposures and adult cancer risk. Epidemiologic Reviews, 39(1), 11-27. https://doi.org/10.1093/epirev/mxx004
Darabi, N. & Hosseinichimeh, N. (2020). System dynamics modeling in health and medicine: A systematic literature review. System Dynamics Review, 36(1), 29-73.https://doi.org/10.1002/sdr.1646
Dhibi, N. & Amar, C. B. (2021). Performance of genetic algorithm and Levenberg-Marquardt method on multi-mother wavelet neural network training for 3D huge meshes deformation: A comparative study. Neural Processing Letters, 53, 2221-2241. https://doi.org/10.1007/s11063-021-10512-y
Diez-Olivan, A., Del Ser, J., Galar, D. & Sierra, B. (2019). Data fusion and machine learning for industrial prognosis: Trends and perspectives towards Industry 4.0. Information Fusion, 50, 92-111. https://doi.org/10.1016/j.inffus.2018.10.005
Du, S. Q., & Yuan, W. (2020). Mathematical modeling of interaction between innate and adaptive immune responses in COVID‐19 and implications for viral pathogenesis. Journal of Medical Virology, 92(9), 1615-1628. https://doi.org/10.1002/jmv.25866
Freebairn, L., Atkinson, J. A., Kelly, P. M., McDonnell, G. & Rychetnik, L. (2018). Decision makers’ experience of participatory dynamic simulation modelling: Methods for public health policy. BMC Medical Informatics and Decision Making, 18, 131. https://doi.org/10.1186/s12911-018-0707-6
Gao, Y. & Yin, D. (2021). A full-stage creep model for rocks based on the variable-order fractional calculus. Applied Mathematical Modelling, 95, 435-446. https://doi.org/10.1016/j.apm.2021.02.020
Gilbert, N., Ahrweiler, P., Barbrook-Johnson, P., Narasimhan, K. P. & Wilkinson, H. (2018). Computational modelling of public policy: Reflections on practice. Journal of Artificial Societies and Social Simulation, 21(1), 14. https://doi.org/10.18564/jasss.3669
Gomez-Vazquez, J. P. (2021). Agent based modeling to explore intervention strategies for prevention and control of infectious diseases, complex systems modeling in epidemiology [Doctoral dissertation]. University of California.
Heydari, B. & Pennock, M. J. (2018). Guiding the behavior of sociotechnical systems: The role of agent‐based modeling. Systems Engineering, 21(3), 210-226. https://doi.org/10.1002/sys.21435
Ho, S. M., Lewis, J. D., Mayer, E. A., Bernstein, C. N., Plevy, S. E., Chuang, E., Rappaport, S. M., Croitoru, K., Korzenik, J. R., Krischer, J., Hyams, J. S., Judson, R., Kellis, M., Jerrett, M., Miller, G. W., Grant, M. R., Shtraizent, N., Honig, G. ,... Wu, G. D. (2019). Challenges in IBD research: Environmental triggers. Inflammatory bowel diseases, 25(Supplement 2), S13-S23. https://doi.org/10.1093/ibd/izz076
Johnson, N. B., Hayes, L. D., Brown, K., Hoo, E. C., Ethier, K. A. & Centers for Disease Control and Prevention (CDC) (2014). CDC National Health Report: Leading causes of morbidity and mortality and associated behavioral risk and protective factors—United States, 2005–2013. MMWR Supplements 63(4), 3-27.
Kelleher, J. (2020). A hybrid agent-based and equation based model for the spread of infectious diseases. JASSS 23(4), 1-25. http://hdl.handle.net/2262/98332
Keogh, R. H., Szczesniak, R., Taylor-Robinson, D. & Bilton, D. (2018). Up-to-date and projected estimates of survival for people with cystic fibrosis using baseline characteristics: A longitudinal study using UK patient registry data. Journal of Cystic Fibrosis, 17(2), 218-227. https://doi.org/10.1016/j.jcf.2017.11.019
Khailaie, S., Mitra, T., Bandyopadhyay, A., Schips, M., Mascheroni, P., Vanella, P., Lange, B., Binder, S. C. & Meyer-Hermann, M. (2021). Development of the reproduction number from coronavirus SARS-CoV-2 case data in Germany and implications for political measures. BMC Medicine, 19, 32. https://doi.org/10.1186/s12916-020-01884-4
Khan, A., Uddin, S. & Srinivasan, U. (2019). Chronic disease prediction using administrative data and graph theory: The case of type 2 diabetes. Expert Systems with Applications, 136, 230-241. https://doi.org/10.1016/j.eswa.2019.05.048
Kretzschmar, M. (2020). Disease modeling for public health: Added value, challenges, and institutional constraints. Journal of Public Health Policy, 41, 39-51. https://doi.org/10.1057/s41271-019-00206-0
Kumari, R. & Bhattacharyya, S. (2022). Pandemics and patients with chronic diseases: A study on the health care system in Port Blair, Andaman and Nicobar Islands. Journal of the Anthropological Survey of India, 71(2), 220-235. https://doi.org/10.1177/2277436X221087535
Kwok, K. O., Tang, A., Wei, V. W., Park, W. H., Yeoh, E. K. & Riley, S. (2019). Epidemic models of contact tracing: Systematic review of transmission studies of severe acute respiratory syndrome and middle east respiratory syndrome. Computational and Structural Biotechnology Journal, 17, 186-194. https://doi.org/10.1016/j.csbj.2019.01.003
Leyens, L., Reumann, M., Malats, N. & Brand, A. (2017). Use of big data for drug development and for public and personal health and care. Genetic Epidemiology, 41(1), 51-60. https://doi.org/10.1002/gepi.22012
Lio, W. & Liu, B. (2020). Uncertain maximum likelihood estimation with application to uncertain regression analysis. Soft Computing, 24, 9351-9360. https://doi.org/10.1007/s00500-020-04951-3
Liu, S., Xue, H., Li, Y., Xu, J. & Wang, Y. (2018). Investigating the diffusion of agent‐based modelling and system dynamics modelling in population health and healthcare research. Systems Research and Behavioral Science, 35(2), 203-215. https://doi.org/10.1002/sres.2460
Lysaght, T., Lim, H. Y., Xafis, V. & Ngiam, K. Y. (2019). AI-assisted decision-making in healthcare: The application of an ethics framework for big data in health and research. Asian Bioethics Review, 11, 299-314. https://doi.org/10.1007/s41649-019-00096-0
McCrae, R. R. (2018). Method biases in single-source personality assessments. Psychological Assessment, 30(9), 1160. https://doi.org/10.1037/pas0000566
Mohamadou, Y., Halidou, A. & Kapen, P. T. (2020). A review of mathematical modeling, artificial intelligence and datasets used in the study, prediction and management of COVID-19. Applied Intelligence, 50(11), 3913-3925. https://doi.org/10.1007/s10489-020-01770-9
Ng, K., Kartoun, U., Stavropoulos, H., Zambrano, J. A. & Tang, P. C. (2021). Personalized treatment options for chronic diseases using precision cohort analytics. Scientific Reports, 11, 1139. https://doi.org/10.1038/s41598-021-80967-5
Ng, R., Sutradhar, R., Kornas, K., Wodchis, W. P., Sarkar, J., Fransoo, R. & Rosella, L. C. (2020). Development and validation of the chronic disease population risk tool (CDPoRT) to predict incidence of adult chronic disease. JAMA Network Open, 3(6), e204669-e204669. https://doi.org/10.1001/jamanetworkopen.2020.4669
Ordu, M., Demir, E., Tofallis, C. & Gunal, M. M. (2021). A novel healthcare resource allocation decision support tool: A forecasting-simulation-optimization approach. Journal of the Operational Research Society, 72(3), 485-500. http://dx.doi.org/10.1080/01605682.2019.1700186
Peng, Y., Fu, M. C., Heidergott, B. & Lam, H. (2020). Maximum likelihood estimation by Monte Carlo simulation: Toward data-driven stochastic modeling. Operations Research, 68(6), 1896-1912. https://doi.org/10.1287/opre.2019.1978
Rashid, J., Batool, S., Kim, J., Wasif Nisar, M., Hussain, A., Juneja, S. & Kushwaha, R. (2022). An augmented artificial intelligence approach for chronic diseases prediction. Frontiers in Public Health, 10, 860396. https://doi.org/10.3389/fpubh.2022.860396
Romano, S., Fierro, A. & Liccardo, A. (2020). Beyond the peak: A deterministic compartment model for exploring the Covid-19 evolution in Italy. PLoS One, 15(11), e0241951. https://doi.org/10.1371/journal.pone.0241951
Schmitt, L., Ochalek, J., Claxton, K., Revill, P., Nkhoma, D. & Woods, B. (2021). Concomitant health benefits package design and research prioritisation: Development of a new approach and an application to Malawi. BMJ Global health, 6(12), e007047. http://dx.doi.org/10.1136/bmjgh-2021-007047
Shinde, G. R., Kalamkar, A. B., Mahalle, P. N., Dey, N., Chaki, J. & Hassanien, A. E. (2020). Forecasting models for coronavirus disease (COVID-19): A survey of the state-of-the-art. SN Computer Science, 1(197), 1-15. https://doi.org/10.1007/s42979-020-00209-9
Sy, C., Ching, P. M., San Juan, J. L., Bernardo, E., Miguel, A., Mayol, A. P. Culaba, A., Ubando, A. & Mutuc, J. E. (2021). Systems dynamics modeling of pandemic influenza for strategic policy development: A simulation-based analysis of the COVID-19 case. Process Integration and Optimization for Sustainability, 5, 461-474. https://doi.org/10.1007/s41660-021-00156-9
Tracy, M., Cerdá, M., & Keyes, K. M. (2018). Agent-based modeling in public health: Current applications and future directions. Annual Review of Public Health, 39, 77-94. https://doi.org/10.1146/annurev-publhealth-040617-014317
van der Zwet, K., Barros, A. I., van Engers, T. M. & Sloot, P. M. (2022). Emergence of protests during the COVID-19 pandemic: Quantitative models to explore the contributions of societal conditions. Humanities and Social Sciences Communications, 9, 68. https://www.csh.ac.at/publication/emergence-of-protests-during-the-covid-19-pandemic-quantitative-models-to-explore-the-contributions-of-societal-conditions/
Walters, C. E., Meslé, M. M. & Hall, I. M. (2018). Modelling the global spread of diseases: A review of current practice and capability. Epidemics, 25, 1-8. https://doi.org/10.1016/j.epidem.2018.05.007
Wang, N., Fu, Y., Zhang, H., & Shi, H. (2020). An evaluation of mathematical models for the outbreak of COVID-19. Precision Clinical Medicine, 3(2), 85-93. https://doi.org/10.1093/pcmedi/pbaa016
Article Statistics
Downloads
Copyright License

This work is licensed under a Creative Commons Attribution 4.0 International License.