
EVOLUTION ALGEBRAS
Abdullayev Sarvar Anvar ugli , Teacher of Bukhara State Pedagogical InstituteAbstract
Mathematics is widely applied in various scientific and practical fields, enabling the understanding and modeling of complex natural processes. In this regard, evolutionary algebra is a crucial mathematical discipline focused on studying the algebraic models of dynamic systems. Evolutionary algebra is used to express and analyze the development of systems that change over time. This field is widely utilized in areas such as biological evolution, genetic algorithms, physical processes, and artificial intelligence.
Keywords
Evolutionary algebra, Starting point, Trivial evolutionary algebra, basis, smooth algebra.
References
List of used literature:
1.U.A. Rozikov and U.U.Zhamilov On F-quadratic stochastic operators, Math. Notes.83(4), 554-559 (2008).
2.U.A.Rozikov and U.U.Zhamilov, The dynamics of stricly operators non-Volterra quadratic schochasticoperators on the 2 – simplex, Sbornik: Math. 200(9), 1339-1351 (2009).
3.U.A.Rozikov andA.Zada, On l-Volterra quadratic stochastic operators,Doklady.Math.79(1) 32-34 (2009).
4.U.A.Rozikov and N. B. Shamsiddinov,On non-Volterra quadratic stochastic oprators generated by a product mensure, Stoch, Anal. Appl. 27(2) 353-362 (2009)
5.J.P.Tian, “Evolution algebras and their applications,” Lecture Notes in Mathematics, 1921,Springer-Verlag, Berlin, (2008)
6. A. Worz - Busekros, “Algebras in genetics” Lecture Notes in Biomathematics, 36.Springer-Verlag, Berlin-New York.1980
7.E. Lombardi, Oscillatory Integrals and Phenomena Beyond all Algebraic Orders (2000).
8.H.Kicchle, Theory of K-Loops (2002)
9.I.Chueshov, Monotone Random Systems (2002)
10.R.N.Ganikhodzhaev, Quadratic stochastic operators Lyapunov functions, and tournaments, Russian Acad. Sci. Sb. Math.76(2). 489-506 (1993).
11. P. Holgate,”The interpretation of derivations in genetic algebras” Linear Algera Appl.85.75-79.(1987).
A.G.Kurosh Oliy algebra kursi. Toshkent “O’qituvchi” 1976
Uzoqboyev, A., Abdullayev, S., & Abriyev, N. (2023). Robototexnik mexanizmlarning maxsusliklarini izlashda matritsaviy usulning qo’llanishi. Евразийский журнал математической теории и компьютерных наук, 3(1), 92-100.
Barotov, A. S., & Abdullayev, S. A. (2022, May). Robototexnik mexanizmlarning maxsusliklarini izlashda matritsaviy usulning qo’llanishi. In International scientific and practical conference on “Modern problems of applied mathematics and information technologies.
. Abduhamidov A.U, Nasimov H.A,Nosirov U.M, Husanov Z.H.“Algebra va matematik analiz asoslari”. O’qituvchi. Nashriyot-matbaa ijodiy uyi. Toshkent 2008
Sh.A.Ayupov, B.A.Omirov, A.X.Xudoyberdiyev, F.H.Haydarov Algebra va sonlar nazariyasi (o’quv qo’llanma). Toshkent. “Tafakkur-bo’stoni” 2019.
Брюно А.Д. Солеев А. Локальная униформизация ветвей пространственной кревой и многоранники Ньютона Алгебра ианализ Т. 3, вып. 1, (1991), С.
Anvar o'g'li, A. S. (2024). Ko‘phad rezultantining tenglamalar sistemasini yechishga tadbiqlari. Buxoro davlat pedagogika instituti jurnali, 4(4).
Saxayev M. “Elementar matematika masalalari to’plami” I.II qismlar.”O’qituvchi” Toshkent 1970.1972. 220-236 bet.
Anvar o'g'li, A. S. (2024). Kompleks o’zgaruvchili funksiyalarning integralini. Buxoro davlat pedagogika instituti jurnali, 4(4).
Бахронов, Б. И. У., & Холмуродов, Б. Б. У. (2021). Изучение спектра одной 3х3-операторной матрицы с дискретным параметром. Наука, техника и образование, (2-2 (77)), 31-34
Article Statistics
Downloads
Copyright License

This work is licensed under a Creative Commons Attribution 4.0 International License.