Articles | Open Access |

Sentiment Analysis in Computational Linguistics: Bridging Technology and Human Emotion

Z.U.Kulmatov , Institute of International School of Finance Technology and Science (ISFT) Teacher of English, Master’s Philology and Language Teaching Department

Abstract

Sentiment analysis (SA) is a powerful computational technique in computational linguistics that allows machines to understand and analyze human sentiment expressed in language. In this article, we discuss the evolution of SA techniques, their daily applications, and the ethical challenges they pose. Integrating viewpoints of machine learning, linguistics, and social sciences, we highlight how SA is transforming industries while battling its limitations and overall societal impact. This review, targeted at practitioners and researchers, highlights the importance of ethical standards and cross-disciplinary collaboration in ensuring the ethical use of SA.

Keywords

sentiment analysis, natural language processing, ethical AI, machine learning, computational linguistics

References

Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., ... & Herrera, F. (2020). Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 82–115. https://doi.org/10.1016/j.inffus.2019.12.012

Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency (pp. 610–623). https://doi.org/10.1145/3442188.3445922

Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F., ... & Stoyanov, V. (2020). Unsupervised cross-lingual representation learning at scale. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (pp. 8440–8451). https://doi.org/10.18653/v1/2020.acl-main.747

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of NAACL-HLT (pp. 4171–4186). https://doi.org/10.18653/v1/N19-1423

Hovy, D., & Spruit, S. L. (2016). The social impact of natural language processing. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (pp. 591–598). https://doi.org/10.18653/v1/P16-2096

Joshi, P., Santy, S., Budhiraja, A., Bali, K., & Choudhury, M. (2020). The state and fate of linguistic diversity and inclusion in the NLP world. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (pp. 6282–6293). https://doi.org/10.18653/v1/2020.acl-main.560

Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H., & Kang, J. (2020). BioBERT: A pre-trained biomedical language representation model for biomedical text mining. Bioinformatics, 36(4), 1234–1240. https://doi.org/10.1093/bioinformatics/btz682

Liu, B. (2012). Sentiment analysis and opinion mining. Synthesis Lectures on Human Language Technologies, 5(1), 1–167. https://doi.org/10.2200/S00416ED1V01Y201204HLT016

Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., & Potts, C. (2011). Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics (pp. 142–150).

Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2(1–2), 1–135. https://doi.org/10.1561/1500000011

Taboada, M., Brooke, J., Tofiloski, M., Voll, K., & Stede, M. (2011). Lexicon-based methods for sentiment analysis. Computational Linguistics, 37(2), 267–307. https://doi.org/10.1162/COLI_a_00049

Tumasjan, A., Sprenger, T. O., Sandner, P. G., & Welpe, I. M. (2010). Predicting elections with Twitter: What 140 characters reveal about political sentiment. In Proceedings of the Fourth International AAAI Conference on Weblogs and Social Media (pp. 178–185).

Wang, Y., Wang, L., Rastegar-Mojarad, M., Moon, S., Shen, F., Afzal, N., ... & Liu, H. (2018). Clinical information extraction applications: A literature review. Journal of Biomedical Informatics, 77, 34–49. https://doi.org/10.1016/j.jbi.2017.11.011

Article Statistics

Downloads

Download data is not yet available.

Copyright License

Download Citations

How to Cite

Sentiment Analysis in Computational Linguistics: Bridging Technology and Human Emotion. (2025). International Journal of Artificial Intelligence, 5(03), 1329-1332. https://www.academicpublishers.org/journals/index.php/ijai/article/view/3524