Articles | Open Access |

ANALYSIS OF THE FUNCTION AT INFINITY

Risolat Esomurodova,Atajanova Ruxiya, Rajapov Xursand ,

Abstract

This article describes methods for solving integrals using Function deduction with respect to a point at infinity. This article can be a great guide for independent learners

Keywords

Complex area, deduction ,continuous, integral, curved line.

References

V.T. Dubrovin. Theory of functions of a complex variable theory of practice, Kazan, 2010.

Jumarie G (2010). Cauchy’s integral formula via the modified Riemann–Liouville derivative for analytic functions of fractional order. Applied Mathematical Letters, 23(12) 1444-1450.

Blaya R.A., Reyes J. B., Brackx F, Schepper H.D. and Sommen F. 2012, Cauchy Integral Formulae in Quaternionic Hermitean Clifford Analysis, Complex Analysis and Operator Theory, 6(5) 971-985.

Estrada R, Vindas J. A general integral. Disertationes Mathematicae (Rozprawy Mat). 2012;483. 49 pages.

Vindas J, Estrada R. A tauberian theorem for distributional point values. Arch Math (Basel). 2008;91:247–253.

Article Statistics

Downloads

Download data is not yet available.

Copyright License

Download Citations

How to Cite

ANALYSIS OF THE FUNCTION AT INFINITY. (2025). International Journal of Artificial Intelligence, 5(04), 1110-1113. https://www.academicpublishers.org/journals/index.php/ijai/article/view/4043