Articles | Open Access |

OPPORTUNITIES AND ADOPTION CHALLENGES OF ARTIFICIAL INTELLIGENCE IN THE CONSTRUCTION INDUSTRY

Igamova Shaxinya Zikrilloyevna , Associate professor ,PhD Asian International University

Abstract

Over the past decade, while artificial intelligence (AI) has rapidly transformed numerous industries, the construction sector has been slow to adopt these advancements. However, the rise of sophisticated large language models (LLMs) such as OpenAI’s GPT, Google’s PaLM, and Meta’s Llama has demonstrated significant potential, sparking widespread global interest. Despite this surge, there remains a lack of research specifically examining the opportunities and challenges of integrating Generative AI (GenAI) within the construction industry, resulting in a crucial knowledge gap for both researchers and practitioners. Addressing this gap is essential to effectively leveraging GenAI during its early adoption phase in construction. Given GenAI’s remarkable ability to generate human-like content by learning from existing data, this study explores two key questions: What does the future hold for GenAI in the construction industry? What are the potential opportunities and challenges associated with its implementation? To answer these questions, the study conducts a literature review, assesses industry perspectives using programming-based word cloud and frequency analysis, and incorporates the authors’ insights. Additionally, the paper proposes a conceptual framework for GenAI implementation, offers practical recommendations, highlights future research directions, and establishes a foundational knowledge base to support further exploration of GenAI in construction, architecture, and engineering disciplines.

Keywords

generative AI; implementation framework; construction; AEC; GPT; LLM; PaLM; Llama; fine-tuning.

References

Bamgbade, J.; Nawi, M.; Kamaruddeen, A.; Adeleke, A.; Salimon, M. Building sustainability in the construction industry through f irm capabilities, technology and business innovativeness: Empirical evidence from Malaysia. Int. J. Constr. Manag. 2019, 23, 1–6. [CrossRef]

Zhang, S.; Li, Z.; Ning, X.; Li, L. Gauging the impacts of urbanization on CO2 emissions from the construction industry: Evidence from China. J. Environ. Manag. 2021, 288, 112440. [CrossRef]

Mahbub, P.; Goonetilleke, A.; Ayoko, G.; Egodawatta, P.; Yigitcanlar, T. Analysis of build-up of heavy metals and volatile organics on urban roads in Gold Coast, Australia. Water Sci. Technol. 2011, 63, 2077–2085. [CrossRef]

Javed, A.; Pan, W.; Chen, L.; Zhan, W. A systemic exploration of drivers for and constraints on construction productivity enhancement. Built Environ. Proj. Asset Manag. 2018, 8, 234–238. [CrossRef]

The Next Normal in Construction. Available online: https://www.mckinsey.com/~{}/media/McKinsey/Industries/Capital% 20Projects%20and%20Infrastructure/Our%20Insights/The%20next%20normal%20in%20construction/The-next-normal-in construction.pdf (accessed on 5 May 2021)

Young, D.; Panthi, K.; Noor, O. Challenges involved in adopting BIM on the construction jobsite. Built Environ. 2021, 3, 302–310

Adwan, E.; Al-Soufi, A. A review of ICT technology in construction. Int. J. Manag. Inf. Technol. 2016, 8, 1–10.

Yun, J.J.; Lee, D.; Ahn, H.; Park, K.; Yigitcanlar, T. Not deep learning but autonomous learning of open innovation for sustainable artificial intelligence. Sustainability 2016, 8, 797. [CrossRef]

Yigitcanlar, T.; Cugurullo, F. The sustainability of artificial intelligence: An urbanistic viewpoint from the lens of smart and sustainable cities. Sustainability 2020, 12, 8548. [CrossRef].

Yigitcanlar, T. Greening the artificial intelligence for a sustainable planet: An editorial commentary. Sustainability 2021,

Chien, C.F.; Dauzère-Pérès, S.; Huh, W.T.; Jang, Y.J.; Morrison, J.R. Artificial intelligence in manufacturing and logistics systems: Algorithms, applications, and case studies. Residential 2020, 58, 2730–2731. [CrossRef]

Grabowska, S.; Saniuk, S. Business models in the industry 4.0 environment: Results of Web of Science bibliometric analysis. J. Open Innov. Technol. Market Complex. 2022, 8, 19. [CrossRef]

Xin, X.; Tu, Y.; Stojanovic, V.; Wang, H.; Shi, K.; He, S.; Pan, T. Online reinforcement learning multiplayer non-zero sum games of continuous-time Markov jump linear systems. Appl. Math. Comput. 2022, 412, 126537.

Qudratova, G. M. (2025). TEXNOLOGIK PARKLARNING MINTAQA INNOVATSION RIVOJLANISHINI TA'MINLASHDAGI AHAMIYATI. YANGI O ‘ZBEKISTON, YANGI TADQIQOTLAR JURNALI, 2(8), 170-178.

Sodiqova, N. (2025). IQTISODIYOT FANLARINI OʻQITISHDA TALABALAR TEXNIK TAFAKKURINI RIVOJLANTIRISHNING AMALDAGI HOLATI VA TAKOMILLASHTIRISH YOʻLLARI. " ПЕДАГОГИЧЕСКАЯ АКМЕОЛОГИЯ" международный научно-методический журнал, 2(19).

Bahodirovich, K. B. (2025, April). STRUCTURE OF THE CASH FLOWS STATEMENT. In CONFERENCE OF MODERN SCIENCE & PEDAGOGY (Vol. 1, No. 1, pp. 325-330).

Алимова, Ш. А. (2025). УСТОЙЧИВЫЕ ЦЕПОЧКИ ПОСТАВОК: ОТ ТРЕНДА К НЕОБХОДИМОСТИ РАСШИРЕННАЯ ВЕРСИЯ. Modern Science and Research, 4(5), 76-81.

Toshov, M. H. (2025). SАNОАT KОRXОNАLАRIDА MEHNАTGА HАQ TО'LАSH TIZIMINI BОSHQАRISH. Modern Science and Research, 4(4).

Azimov, B. (2025). METHODS AND MODELS FOR ASSESSING THE SOCIO-ECONOMIC EFFICIENCY OF REGIONAL INNOVATION INFRASTRUCTURE. International Journal of Artificial Intelligence, 1(3), 685-691.

Ikromov, E. I., & Safarova, J. (2025). O’ZBEKISTONDA YASHIL TADBIRKORLIKNI HUDUDLARDA RIVOJLANTIRISHI ISTIQBOLLARI. Modern Science and Research, 4(4), 421-428.

Raxmonqulova, N. O. (2025). DEVELOPMENT OF THE DIGITAL ECONOMY ON A GLOBAL SCALE AND THE EXPERIENCE OF COUNTRIES. SHOKH LIBRARY.

Shadiyev, A. X. (2025). MINTAQANING IJTIMOIY-IQTISODIY RIVOJLANISHINI BOSHQARISH MEXANIZMINI TAKOMILLASHTIRISH. STUDYING THE PROGRESS OF SCIENCE AND ITS SHORTCOMINGS, 1(7), 145-150.

Naimova, N. (2025). THE IMPACT OF GLOBALIZATION ON MODERN ECONOMIC PROFESSIONS. Journal of Multidisciplinary Sciences and Innovations, 1(2), 153-155.

Bazarova, M. (2025). FEATURES OF ASSESSING THE EFFECTIVENESS OF INNOVATION RISK MANAGEMENT OF AN EDUCATIONAL ORGANIZATION IN THE PROCESS OF DIGITAL TRANSFORMATION OF ACTIVITIES. Journal of Multidisciplinary Sciences and Innovations, 1(2), 161-164.

Jumayeva, Z. (2025). THE ROLE OF MICROECONOMIC ANALYSIS IN ENHANCING ECONOMIC EFFICIENCY THROUGH MARKET EQUILIBRIUM ANALYSIS. International Journal of Artificial Intelligence, 1(3), 634-637.

Bobojonova, M. (2025). GREEN ENTREPRENEURSHIP IN UZBEKISTAN AND ITS OPPORTUNITIES. International Journal of Artificial Intelligence, 1(3), 592-595.

Jumayeva, Z. (2025). THE FORMATION OF THE GREEN ECONOMY CONCEPT, STAGES OF DEVELOPMENT AND ITS RELEVANCE. International Journal of Artificial Intelligence, 1(3), 262-266.

Ibragimov, A. (2025). TAX POLICY AND IMPACT ON ECONOMIC DEVELOPMENT. International Journal of Artificial Intelligence, 1(3), 259-261.

Djurayeva, M. (2025). ISSUES OF SMALL BUSINESS AND PRIVATE ENTREPRENEURSHIP DEVELOPMENT. International Journal of Artificial Intelligence, 1(3), 596-598.

Umarova, H. (2025). RIVOJLANGAN MAMLAKATLARDA KORXONA RISKLARINI BOSHQARISH VA BAHOLASH AMALIYOTI TAHLILI. Modern Science and Research, 4(5), 158-161.

Aslanova, D. (2025). CHALLENGES OF IMPLEMENTING MODERN MANAGEMENT PRINCIPLES IN THE TOURISM INDUSTRY. Journal of Multidisciplinary Sciences and Innovations, 1(2), 119-121.

Rajabova, D. (2025). SPECIFIC FEATURES AND FACTORS OF SUSTAINABLE DEVELOPMENT OF THE INNOVATIVE ENVIRONMENT IN INDUSTRIAL ENTERPRISES. Journal of Applied Science and Social Science, 1(2), 474-479.

Игамова, Ш. З. (2024). МЕТOДИЧЕCКИЕ РЕКOМЕНДАЦИИ ПO ФOРМИРOВАНИЮ OРГАНИЗАЦИOННO-ЭКOНOМИЧЕCКOГO МЕХАНИЗМА OБЕCПЕЧЕНИЯ ЭФФЕКТИВНOCТИ ИННOВАЦИOННOГO развития ПРЕДПРИЯТИЙ CТРOИТЕЛЬНЫХ МАТЕРИАЛOВ. Gospodarka i Innowacje., 43, 335-340.

Akramova, O. (2025). FOREIGN COUNTRIES IN EXPERIENCE INVESTMENT ATTRACTIVENESS INCREASE MECHANISMS AND UZBEKISTAN IN PRACTICE USE OPPORTUNITIES. Journal of Multidisciplinary Sciences and Innovations, 1(1), 395-398.

Jumayev, B. (2025). BIG DATA: CUSTOMER CREDIT ANALYSIS USING DIGITAL BANKING DATABASE. International Journal of Artificial Intelligence, 1(2), 1056-1059.

Gafarova, D. (2025). INNOVATION POLICY OF THE REPUBLIC OF UZBEKISTAN: ACHIEVEMENTS AND PROSPECTS. Journal of Multidisciplinary Sciences and Innovations, 1(2), 165-167.

Article Statistics

Downloads

Download data is not yet available.

Copyright License

Download Citations

How to Cite

OPPORTUNITIES AND ADOPTION CHALLENGES OF ARTIFICIAL INTELLIGENCE IN THE CONSTRUCTION INDUSTRY. (2025). International Journal of Artificial Intelligence, 5(05), 942-949. https://www.academicpublishers.org/journals/index.php/ijai/article/view/4526