
SHAPE RECOGNITION IN NOISY IMAGES USING AI ALGORITHMS
Zokhidjon Miratoev , Assistant, Department of Mathematics and Natural Sciences, Almalyk Branch of TSTU, UzbekistanAbstract
This study investigates the application of artificial intelligence (AI) algorithms for robust shape recognition in noisy binary images, addressing challenges in medical imaging (e.g., organ segmentation in MRI scans), industrial inspection (e.g., defect detection in automotive parts), and remote sensing (e.g., object identification in satellite imagery). Three AI-based methods—Hough Transform (HT), Fourier Descriptors (FD), and Zernike Moments (ZM)—were implemented and evaluated using Python-based tools (OpenCV, Mahotas). Experimental results demonstrate that Zernike Moments achieve the highest accuracy (95%) in high-noise conditions, Fourier Descriptors excel in reconstructing complex contours, and Hough Transform is fastest for detecting basic geometric shapes. A hybrid approach integrating these methods with deep learning, such as Convolutional Neural Networks (CNNs), is proposed to enhance accuracy and scalability.
Keywords
Shape Recognition, Noisy Images, Hough Transform, Fourier Descriptors, Zernike Moments, Image Processing, Python, Pattern Recognition, Convolutional Neural Networks.
References
Gonzalez, R. C., & Woods, R. E. (2018). Digital Image Processing (4th ed.). Pearson.
Ballard, D. H. (1981). Generalizing the Hough Transform to detect arbitrary shapes. Pattern Recognition, 13(2), 111–122.
Khotanzad, A., & Hong, Y. H. (1990). Invariant image recognition by Zernike moments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(5), 489–497.
Teague, M. R. (1980). Image analysis via the general theory of moments. Journal of the Optical Society of America, 70(8), 920–930.
Sonka, M., Hlavac, V., & Boyle, R. (2014). Image Processing, Analysis, and Machine Vision (4th ed.). Cengage.
Dosovitskiy, A., et al. (2021). An image is worth 16x16 words: Transformers for image recognition at scale. International Conference on Learning Representations (ICLR).
Liu, Z., et al. (2022). A ConvNet for the 2020s. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. ICLR.
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems (NeurIPS).
Dmitry, S., Sadykov, S., Samandarov, I., Dushatov, N., & Miratoev, Z. (2024). METHOD OF INVESTIGATION OF STABILITY AND INFORMATIVENESS OF BASIC AND DERIVATIVE FEATURES OF ANALYSIS OF MICROSCOPIC AND DEFECTOSCOPIC IMAGES OF CAST IRON MICROSTRUCTURE. Universum: технические науки, 10(11 (128)), 31-39.
Буланова Ю.А., Садыков С.С., Самандаров И.Р., Душатов Н.Т., Миратоев З.М. Исследования методов повышения контраста маммографических снимков. Oriental renaissance: Innovative, educational, natural and social sciences. 2022. Vol. 2. No. 10. pp. 304-315.
Самандаров И.Р., Маншуров Ш.Т., Душатов Н.Т., Миратоев З.М., Мустафин Р.Р. Обработка изображений в С++ с помощью библиотеки OpenCV // Universum: технические науки.-2023- № 5(110).
Article Statistics
Downloads
Copyright License

This work is licensed under a Creative Commons Attribution 4.0 International License.